•Example # 1:
ddxsin(x)=cos(x)
using the series we have: centre at x=0
f(0)=sin(0)=1
f′(0)=cos(0)=1
f2(0)=−sin(0)=1
f3(0)=−cos(0)=−1
∞∑n=0fn(0)n!(x−0)n=f(0)+f′1!x+f22!x2+……..= 0+(11!x)+0+(−13!x3)+0+…….=x−x33!+x55!−…….
Therefore,
ddxx−x33!+x55!−…….=1+3x23!+5x45!−…..=1−x22!+x44!−…..=cos(x).
•Example # 2:
f(x)=1x,f′(x)=1(1−x)2
centre at x=0
f(0)=1
f′(0)=1
f2(0)=−2(x−1)3=2
f3(0)=6(x−1)4=6
f4(0)=−24(x−1)5=24
∞∑n=0fn(0)n!xn=1+11!x+22!x2+63!x3+……=1+x+x2+x3+x4=∞∑n=0xn.
ddx1+x+x2+x3+x4=0+1+2x+3x2+4x3=1(1+x)2
•Example # 3:
ddx(log(x))=1x, centre at x=1.
f(x)=log(x)
f(1)=(log(1))=0
f′(1)=1
f2(1)=−x−2=−1
f3(1)=2x−3=2
f4(1)=−6x−4=−6
∞∑n=0fn(1)n!(x−1)n=0+112!(x−1)2+23!(x−1)3+…=∞∑n=1(−1)n+1n(x−1)n. ddx(0+112!(x−1)2+23!(x−1)3+…)=1−(x−1)+(x−1)2−(x−1)3+…=1x.
•Example # 4:
f(x)=√1+x
ddx√1+x=12√1+x, centre at x=0.
f(0)=1
f′(0)=12
f2(0)=−14(x+1)32=−14
f3(0)=38(x+1)52=38
∞∑n=0fn(0)n!(x)n=1+x2−14∗2!x2+38.3!x3−…..
=1+x2−x28+x316−……..
ddx(1+x2−x28+x316−……..)=0+12−x4+3x216−….=12√1+x