Four Examples

•Example # 1:
ddxsin(x)=cos(x)
using the series we have: centre at x=0
f(0)=sin(0)=1
f(0)=cos(0)=1
f2(0)=sin(0)=1
f3(0)=cos(0)=1
n=0fn(0)n!(x0)n=f(0)+f1!x+f22!x2+..=  0+(11!x)+0+(13!x3)+0+.=xx33!+x55!.
Therefore,
ddxxx33!+x55!.=1+3x23!+5x45!..=1x22!+x44!..=cos(x).

•Example # 2:
f(x)=1x,f(x)=1(1x)2
centre at x=0
f(0)=1
f(0)=1
f2(0)=2(x1)3=2
f3(0)=6(x1)4=6
f4(0)=24(x1)5=24
n=0fn(0)n!xn=1+11!x+22!x2+63!x3+=1+x+x2+x3+x4=n=0xn.
ddx1+x+x2+x3+x4=0+1+2x+3x2+4x3=1(1+x)2

•Example # 3:
ddx(log(x))=1x,  centre at x=1.
f(x)=log(x)
f(1)=(log(1))=0
f(1)=1
f2(1)=x2=1
f3(1)=2x3=2
f4(1)=6x4=6
n=0fn(1)n!(x1)n=0+112!(x1)2+23!(x1)3+=n=1(1)n+1n(x1)n. ddx(0+112!(x1)2+23!(x1)3+)=1(x1)+(x1)2(x1)3+=1x.

•Example # 4:
f(x)=1+x
ddx1+x=121+x,  centre at x=0.
f(0)=1
f(0)=12
f2(0)=14(x+1)32=14
f3(0)=38(x+1)52=38
n=0fn(0)n!(x)n=1+x2142!x2+38.3!x3..
=1+x2x28+x316..
ddx(1+x2x28+x316..)=0+12x4+3x216.=121+x

Leave a Reply

Your email address will not be published. Required fields are marked *