
Types of Muscle Movement:

- Concentric:
 - Muscle fibres shorten
- Eccentric:
 - Muscle fibres lengthen
- Isometric:
 - Muscle fibres do not change in length

Muscle Fibres and Energy Systems

ATP=ENERGY

Slow-Twitch vs. Fast-Twitch Muscles

- Slow-twitch muscle fibres:
 - Most active during: long-distance running, swimming, and cycling
 - Red or dark in colour
 - Generate and relax tension slowly; able to maintain a lower level of tension for long durations
- Fast-twitch muscle fibres:
 - Ideal for: short sprints, powerlifting, and explosive jumping
 - Pale in colour
 - Ability to tense and relax quickly; generate large amounts of tension with low endurance levels

Three Fibre Types

- Type I or Slow-Oxidative (SO)
 - Generate energy slowly
 - Fatigue-resistant
 - Depend on aerobic processes
- Type IIA or Fast-Oxidative Glycolytic (FOG)
 - Intermediate-type muscle fibres
 - Allow for high-speed energy release
- Type IIB of Fast-Glycolytic (FG)
 - Store glycogen and high levels of enzymes
 - Allow for quick contraction without the need for oxygen
- THESE FIBRE TYPES REQUIRE DIFFERENT TYPES OF ENERGY!

"2" Energy Systems/Three Energy Systems

- Anaerobic System (2 DIFFERENT TYPES, <u>ALATIC AND LACTIC</u>)
 - ♦ Without the use of oxygen (O₂)
 - ▶ None of its metabolic activity will involve O₂
 - Utilizes chemicals and enzymes; occurs in the muscle fibre
 - Short-lived
- Aerobic System
 - ❖ In the presence of oxygen (O₂)
 - ▶ All of its metabolic activity will involve O₂
 - Occurs in the mitochondria of cells
 - Leads to the complete breakdown of glucose

HOWEVER, these are "in use" at the same time, which looks like 3 different systems.

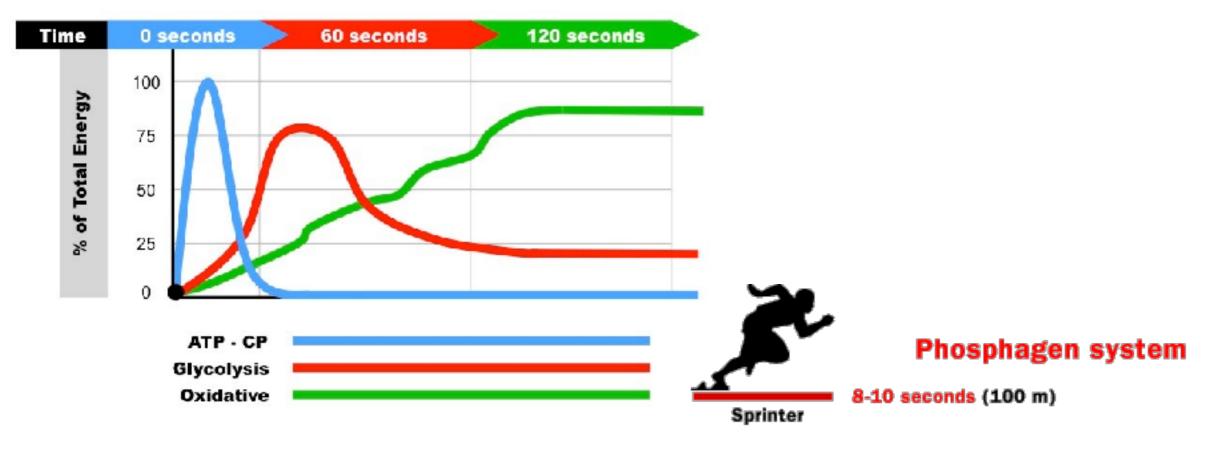
The Role of Energy Systems

The three energy systems available to allow for muscle function:

- Anaerobic alactic
- Anaerobic lactic
- Aerobic
 - Each system has certain limitations and strengths
 - Training can be incorporated to either enhance one or all energy systems, depending on the athlete's needs

Anaerobic Alactic Energy System

- First of 2 Anaerobic Energy Pathways
- Relies on Stored ATP (Energy) for 10-15 Seconds
- High speed explosive movements, generally 85%-100% of maximal intensity
- High intensity and volume training
- No by-product
- Training prescription will depend greatly on the athlete's level of fitness, athletic aspirations, and type of sport


Anaerobic Lactic Energy System

- Second Anaerobic energy system, provide additional 1-3 Minutes of Energy
- Uses glucose/glycogen (carbohydrates) to make ATP
- By-product=lactic acid, which causes?
- Moderately high intensity and volume training
- Training prescription will depend greatly on the athlete's level of fitness, athletic aspirations, and type of sport

Aerobic System

- Repetitive movements, generally 50%-75% of maximal intensity
- Short rest periods between sets
- Moderately low intensity and volume training
- Training prescription will depend greatly on the athlete's level of fitness, athletic aspirations, and type of sport

Energy Sources for Different Sports

Aerobic respiration

Training Principles and Methods

Why do we Train?

- Makes the body more efficient
- Makes the body better able to perform certain tasks
- Can make the human machine more effective
- We can run faster, jump higher, and throw further

F.I.T.T. Principle

The four building blocks of exercise prescription

- F = Frequency
- I = Intensity
- T= Type
- T= Time

Frequency

- the amount of time per week spent training
- general guideline is 3-5 times/week
- determination of frequency depends greatly on the athlete's level of fitness, athletic aspirations, and type of training

Intensity

- how hard the individual must work
- taken as a percentage of the individual's maximal aerobic and anaerobic power
- general guideline is 50%-100% of athlete's maximal intensity

Time

- amount of time spent in a single training session
- general guideline is 3-6 times/week
- depends on the athlete's level of fitness, athletic aspirations, and type of training

Type

- either aerobic or anaerobic training prescriptions, or a combination of both
- depends on the athlete's level of fitness, athletic aspirations, and sport or activity for which he or she is training

Concurrent

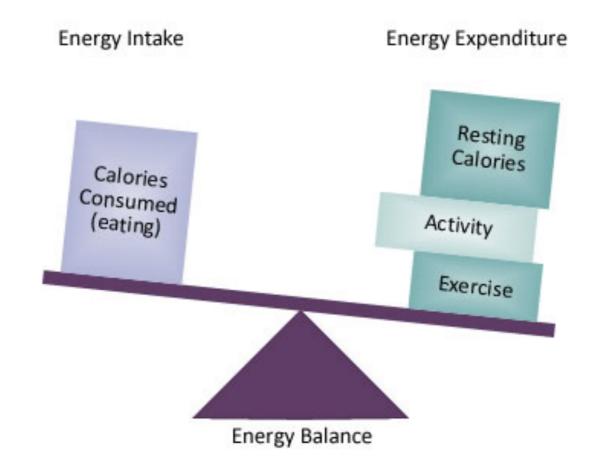
- Training all energy systems at the same time
- Different types of training simultaneously
- Great for general fitness
- Performed during the off-season for certain athletes
- Ideal for keeping variety in one's exercise program

Interval

- Can benefit both anaerobic and aerobic systems
- Alternating periods of intensity within a given workout
- Great for lactic acid training threshold
- Manipulates length of intense period, its intensity, length of rest, and number of repetitions

Performance Nutrition

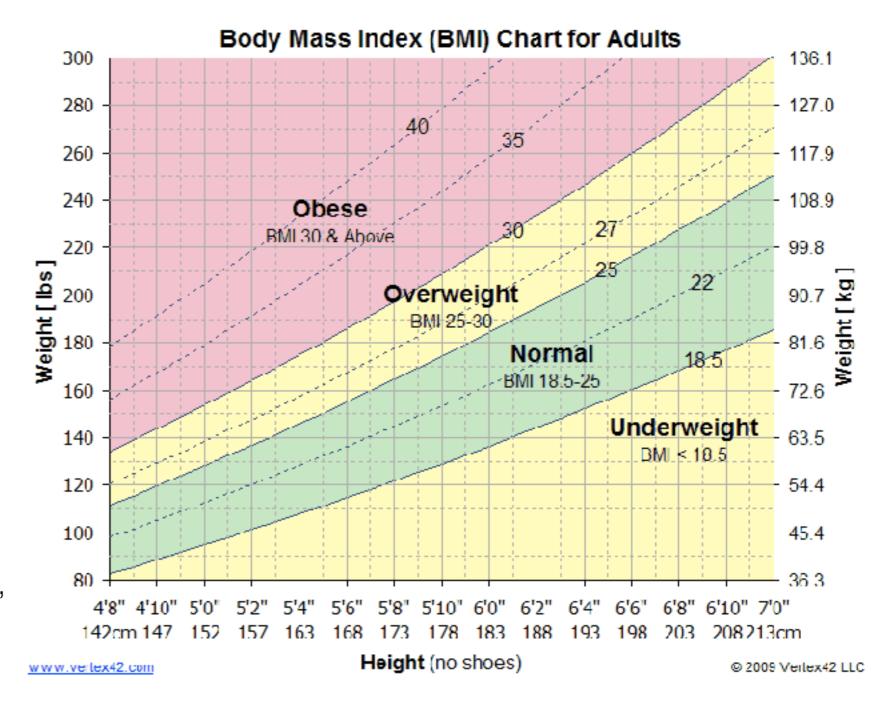
Feeding your body: Energy Nutrients


The Role of Carbohydrates

- Carbohydrates are the most abundant organic substances in nature, and they are essential for human and animal life.
- Preferred by body for many functions

Compare energy sources		
Energy Source	Calories per gram	
Fats	9	
Proteins	4	
Carbohydrates	4	

The Energy Equation


- Energy equation: the food (or energy) we take in should closely match the effort we put out
 - OTHERWISE?
- Energy storage = Energy intake Energy output

Body Mass Index

Body Mass Index (BMI):

- Used to assess extent to which a person is balancing the energy equation
- * Ratio of a person's weight in kilograms to the square of his/her height in metres
- Correlates with increased risks of disease
- Does not distinguish between fat and excess muscle
- Is everyone who is "obese" actually obese?

Obesity

- Obesity is considered a "chronic" condition leading to other illnesses
- Contributing factors include:
 - Activity levels
 - Diet
 - Genetic factors
 - Rates of metabolism
 - Environmental, social, and psychological factors
- National Institute on Nutrition (Canada) reports there is an 80% chance that a child will become obese if both parents are also obese
- 20% of Canadians over 18 are obese (up from 15% over 8 years).

Being Underweight

- Being underweight (officially designated as a BMI of less than 18.5) is a major health concern
- One prominent factor associated with being underweight includes a relentless urge for an impossibly lean physique
- Signs suggestive of an eating disorder include:
 - Preoccupation with food and weight
 - Eating alone
 - Continuous drinking of diet soda and water
 - Trips to the bathroom during or immediately following meals
 - Use of laxatives
 - Compulsive/excessive exercise
 - Increasing criticism of one's body
 - Expressed concerns about being fat

Nutrition and Athletic Performance

Food Group	Athlete 1 (divers, synchronized swimmers, and gymnasts)	Athlete 2 (most athletes)	Athlete 3 (endurance athlete)
Grain Products	Minimum 5 servings	8 servings or more	10–12 servings or more
Vegetables and Fruit	Minimum 5 servings	8 servings or more	8–10 servings or more
Meat and Alternatives	Minimum 2 servings	2 servings	2–4 servings
Milk and Alternatives	Minimum 2 servings (teens 3–4 servings)	2 servings (teens 3–4 servings)	2–6 servings (teens 3–6 servings)
Extra Foods	Minimize extra choices	Choose in moderation	Choose to meet energy needs

Source: Sport Nutrition for the Athletes of Canada

Fluid Replacement

- Before exercise:
 - Drink 2–3 cups of water 2–3 hours before exercise
 - Drink 1 cup of water 10–20 minutes before exercise
- During exercise:
 - Drink 1/2 cup of cool fluid after each 10 minutes of exercise
 - Drink a sports beverage (6–8% concentration of carbohydrate) during activity longer than 50 minutes
- After exercise:
 - Regained fluid loss within 2 hours
 - Drink fluids containing carbohydrates to rebuild glycogen store and electrolytes