
Name:

Date: Period:

Radioactivity Worksheet

1. State the number of neutrons and protons in each of the following nuclei:

2. The three types of radioactive emissions are called alpha (α), beta (β) and gamma (γ) radiation. Complete the table below with the correct information about each type.

	Charge	Atomic Symbol	Can Be Stopped By
Alpha			
Beta		$ _{\mathcal{O}} \leq M_{1}^{2} + 1_{1} < M_{2}^{2}$	
Gamma	n an		

- 3. Which of the three radioactive emissions (α , β , γ) best fit the following statements? Write the correct symbol/s on the lines.
 - a) These emissions are charged.
 - b) This emission is the most massive (heaviest).
 - c) This emission is the most charged.
 - d) This emission is most dangerous outside of the body.
 - e) This emission is stopped by thin paper or a few centimeters of air.
 - f) This emission can travel through paper, but is stopped by aluminum.

- g) This emission can travel through fairly thick lead.
- 4. Which type of radiation alpha, beta, or gamma:
 - a. Results in the greatest change in atomic number? Why?
 - b. Results in the least change in atomic number? Why?

- c. Produces the greatest change in mass number? Why?
- d. Produces the least change in mass number? Why?
- 5. Complete the following nuclear reactions: a. $^{226}_{88}Ra \rightarrow ^{?}_{2}? + ^{0}_{-1}e$
 - b. $\frac{209}{84}Po \rightarrow \frac{205}{82}Pb + \frac{2}{3}?$
 - c. ${}^{238}_{92}U \rightarrow {}^{?}_{?}? + {}^{4}_{2}He$
 - d. $^{234}_{90}Th \rightarrow ^{234}_{91}Pa + ??$

ab1.**

e. $?? + \frac{14}{7}N \rightarrow \frac{17}{8}O + \frac{1}{1}H$

6. When isotope bismuth-213 emits an alpha particle:

a. Write out the nuclear equation:

b. What new element results if the isotope, instead, emits a beta particle?