How Do Animals Respire and Transport Materials?

Lesson 11

(e) Lungs

How do animals respire and transport materials?

- To obtain the energy in food, all animals must carry out chemical reactions
- In these reactions...
 - Food molecules join with oxygen
 - Energy is released
 - Carbon dioxide is formed as a waste product and eliminated
- The process of gas exchange (oxygen in, carbon dioxide out) is called respiration

Gas Exchange in Simple Animals Animals respire in different ways

Example: sponges and cnidarians (i.e. jellyfish, hydra)

- Their body wall is made of just 2 cell layers
- Water outside the animal touches the cells in one layer
- Water inside the animal touches cells in the other layer
- Both layers of cells get oxygen and get rid of carbon dioxide by diffusion
 - Diffusion = movement from an area of high concentration to an area of low concentration

Gas Exchange in Simple Animals cont'd

Animals respire in different ways

Example: sponges and cnidarians (i.e. jellyfish, hydra)

- The concentration of oxygen is higher in the water than in the cells
 - Oxygen diffuses from the water into the cells
- The concentration of carbon dioxide is higher in the cells than in the water
 - Carbon dioxide diffuses from the cells into the water

Gas Exchange in Other Animals Animals respire in different ways

- Most animals are not just two cell layers thick
- They contain many cells deep inside the body
- These cells cannot exchange gases directly with the outside environment
- Animals like these must have a special organ for gas exchange
 - Such organs come in many different forms

Gas Exchange in Other Animals cont'd Animals respire in different ways

- Animals that live in water usually have gills
 - E.g. fish, tadpoles, lobsters, clams
- Gills often have a feathery structure
 - Provides a large surface area to allow diffusion to happen quickly
 - Oxygen diffuses from the water into the gills
 - Carbon dioxide diffuses in the opposite direction (gills \rightarrow water)

Gas Exchange in Other Animals cont'd Animals respire in different ways

- Land animals exchange oxygen and carbon dioxide with the air
- Insects use a system of tubes to carry air into the body
 - The tubes have very fine branches that reach almost all of the animal's cells
 - The entrances to the tubes are scattered over the insect's body

Gas Exchange in Other Animals cont'd Animals respire in different ways

- Most other animals use lungs for gas exchange
 - Lungs are like balloons inside the body
 - When you inhale, or breathe in, you draw air into your lungs
 - Exhaling, or breathing out, forces the air back out
 - Like gills, lungs provide a large surface area for gas exchange

Circulatory System

- Animals must transport oxygen from their gills or lungs to the rest of their body
- They must transport carbon dioxide from the rest of their body to their gills or lungs
- A circulatory system performs these jobs

Circulatory System

- Circulatory means flowing in a circle
- The circulatory system moves blood through the body
- In the gills or lungs, oxygen enters the blood and carbon dioxide leaves
- As the blood circulates,
 - It delivers oxygen to all the cells in the body
 - Picks up carbon dioxide from the cells to bring back to the gills/lungs to be expelled
 - It also carries nutrients from the digestive tract to cells

Circulatory System

- All circulatory systems have a set of tubes and one or more pumps
 - The tubes are called blood vessels
 - The pumps are called hearts
- When a heart contracts, or pulls together, it squeezes blood through the blood vessels

Open Circulatory System

- Arthropods (E.g. crabs, **insects**, spiders, scorpions etc.) and mollusks (E.g. snails, slugs, octopi etc.)
- In an open circulatory system, blood leaves one set of vessels
 - The blood enters spaces around the animal's organs
 - The blood flows slowing through the spaces
 - The blood makes direct contact with cells
 - The blood then enters another set of vessels and returns to the heart

Close Circulatory System

- Annelids (E.g. earthworms, leeches), vertebrates (E.g. fish, birds, mammals, amphibians, and reptiles)
- In a closed circulatory system, the blood stays inside vessels at all times
 - The smallest vessels have very thin walls
 - Oxygen and carbon dioxide diffuse into or out of the blood across these walls

Vertebrate Circulatory System

- The circulatory system of a vertebrate includes a single heart
- The heart is divided into enclosed spaces called chambers
- The atria are chambers that receive blood that returns to the heart
- The ventricles are chambers that pump blood out of the heart to the rest of the body
- Amphibians and most reptiles have two atria and one ventricle (3 chambered heart)
- Birds, mammals, and some reptiles have two atria and two ventricles (4 chambered heart)

Vertebrate Circulatory System

Mammals and Birds:

- The left atrium receives blood from the lungs
 - This blood has a lot of oxygen that was picked up in the lungs
 - This blood has little carbon dioxide
 - The left atrium pumps the blood to the left ventricle
- The **left ventricle** pumps the blood to the rest of the body
 - The blood delivers oxygen to body tissues and picks up carbon dioxide that has formed as waste

Vertebrate Circulatory System

Mammals and Birds:

- The blood returns to the right atrium of the heart
 - The blood has little oxygen and a lot of carbon dioxide
 - The blood moves from the right atrium to the right ventricle
- The **right ventricle** pumps the blood to the lungs
- In the lungs, oxygen enters the blood and carbon dioxide leaves the blood
- The blood returns to the left atrium, completing the cycle

Key
Oxygen-rich blood
Oxygen-poor blood
© 2011 Pearson Education, Inc.

Self-Check

- 1. How are gases exchanged in a sponge?
- 2. Describe the system that insects use to respire (carry oxygen and carbon dioxide in and out of the body/cells)
- 3. What is the difference between an open and a closed circulatory system?
- 4. What is the function of the atria in a vertebrate heart?
- 5. In a bird's heart, where does blood go from the right ventricle?

On a separate piece of paper, answer the questions above. To be collected next class.