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ON A CLASS OF STOCHASTIC OPTIMIZATION PROBLEMS
WITH A SPECIFIED GROWTH PATTERN*

MASAO NAKAMURAfT
The University of Alberta

We consider a system which consists of several subsystems. The outputs of these
subsystems satisfy linear difference equations which specify the growth pattern of
the output of the system over time. The state of each subsystem is described by a
finite Markov chain, the transition probabilities of which are subject to our control.
Associated with the Markov chain of each subsystem is a cost per unit output of the
subsystem, and the cost is incurred as the subsystem occupies one of J states in each
epoch. The problem of minimizing the total expected cost with respect to the transi-
tion probabilities over a sufficiently long period of time is shown under certain con-
ditions to reduce to a collection of n independent programs. Each of these can be
solved by column generation techniques.

1. Introduction

The system of interest to us is a collection of n subsystems. The evolution of each
subsystem is probabilistic and forms a finite Markov chain. Associated with each
subsystem is an output level which, together with the output levels of other subsys-
tems, satisfies a system of linear difference equations describing the interrelationships
among the subsystems. An optimization problem based on this model is formulated
and the conditions under which this problem reduces to n independent programs are

given.
2. The Model

Let us consider a system which consists of n subsystems. Each subsystem can occupy
one of J states that are numbered 1 through J. The evolution of edach subsystem is
probabilistic and independent of the others. Let

1) ¥ (t) = Prob. [subsystem ¢ occupies statej in epoch ¢]
fort=1,2---,n7=12--+,Jand ¢t =0,1,2, - . The evolution of subsystem
i from each epoch to the next is governed by a stochastic matrix P, and

2) @+ 1) = 22 @)P?Y forall ¢,

where 7@ @¢) = @ @), -, 7{? (t)), and where 7” (0) such that ={” (0) = 0 and
D Iam(0) = 1 are assumed given for ¢ = 1, 2, --- , n. The decision variables in
this model are the matrices P, and we assume that

3) PY ¢ 89 forall i,

where 8 is a convex polyhedron.
The manner in which the subsystems are interrelated will now be described. Let L
be a fixed nonnegative primitive and irreducible n X 7 matrix." Let y (0) be a fixed

* Received November 1972; revised February 1973.

t The author wishes to thank the referee for this paper for bringing to his attention an error in
the original manuscript and for stylistic suggestions which proved helpful in rewriting this paper.

1 A nonegative matrix L is irreducible if and only if its directed graph is strongly connected. An
irreducible matrix L is primitive if and only if there exists a positive integer p (< «) such that
L? > 0. See Gantmacher [5] or Lancaster [6] for a general treatment of nonnegative matrices.
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nonnegative, nonzero n X 1 vector. Let y (¢) be defined recursively by

“) y(@) =Ly —1)

fort = 1,2, --- . Let the ith component of y (t) be interpreted as the output level of
subsystem 7 in epoch ¢. The number ¢;" is the cost per unit output of subsystem 4
when it occupies state j. So, with ¢’ = (¢i, -+, ¢,')’ where the prime denotes the
transpose, the quantity

(5) y: (7P ()

is the expected cost of subsystem ¢ in epoch ¢{. (We can also consider the cost asso-
ciated with the transition of each subsystem from one state to another, but this adds
nothing to the model itself.)

Define as a (stationary) policy P an n-tuple of stochastic matrices: that is,
P = (PY, .-, P™) with P € 8§ for each 4. Let & be the discount factor. Then
the expected discounted cost J (T, P) of using policy P in epochs 0 through 7T is
given by

6) J(T, P) = Xioa' 2y @) = Xilea' 2iay:s(@)r? OP)c.

Policy P* is said to overtake policy P if there exists an integer T such that, for all
T > T%

) J(T, P) > J(T, P*)

(cf. Gale [4]).

Before giving conditions under which one policy overtakes all others, we will con-
sider the following examples. Consider an n-sector economy. y;(¢) could be the output
in epoch ¢ with the technological level of the ¢th sector equal to one of J levels {1,
2, - - -, J}. The growth pattern of the output y(¢) of the economy could be characterized
by (4) with the given matrix L, and the technological transitions within each sector,
classified into J levels {1, 2, - -- , J}, given by (2). ¢;' would be the cost per unit out-
put of the ¢th sector incurred when the 7th sector of the economy finds itself in tech-
nological level j. Assuming that the growth pattern of the economy as a whole is
specified by (4), our problem would be to find an optimal n-tuple of stochastic matrices
P for the technological level such that the total expected cost (6) due to technological
‘change is minimized subject to (2) and (3).

As another example, consider a community health services system in which y;(¢)
is the number of people in the community in age group < in epoch ¢. The state of health
of a representative individual of age group 7 in each epoch is equal to one of J values
{1, 2, ---, J} which correspond to the possible health states of an individual. The
matrix L characterizes the growth pattern of the population, and the (I, k)th element
of P* is the transition probability that an individual of age group 4 will move to health
state k given that he was in health state 7 in the previous epoch. A health services cost
¢; is incurred by the community when an individual of age group ¢ is in health state j.
Assuming that P’s are to some extent controllable by public community health
policies, our problem is to minimize the total expected health services cost (6) sub-
ject to (2), (3) and the population growth pattern (4). (For an example of a Markovian
description of a community health services system see Navarro, Parker and White [9].)

One might note that our model is a combination of a deterministic system (4) and
the finite Markov chains of its subsystems which are characterized by (2). It is easy
to see that if there is only one state (ie. J = 1) for each subsystem, the dynamics of
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the system are fully described by (4), while if there is only one subsystem (i.e.n = 1)
our model reduces to a class of Markovian decision problems (see Wolfe and Dantzig
[10], Denardo [1] and Denardo and Fox [2]).

In the following section conditions are given under which one policy overtakes all
others.

3. Our Main Theorem

Let us first analyze the matrix L which is nonnegative, primitive and irreducible.
It is well known (Gantmacher [5] and Lancaster [6]) that the eigenvalue, A, whose
magnitude is largest, is positive and unique, and that this eigenvalue corresponds to a
single right eigenvector z, which is strictly positive. Furthermore, for any n X 1
nonzero vector y,

(8) lim,e (Ly/N') = ke,

where k is a nonzero constant.
We now impose the condition that
©) A > 1,

This means that the asymptotic growth rate of the system more than offsets the dis-
count factor.” Consider the following n programs:

(10) Minimize #“¢,
subject to the constraints

(11) : 70 = 2P,

(12) P(i) € S(i)’

(13) 7 20, i =L

We assume that all n programs have the following properties: the sth program is
maximized by a unique matrix P*®, and S consists exclusively of irreducible,
primitive matrices.”

TueorEM. Policy P* = (P*®, ... | P*™) overtakes all others.

Proor. Consider policy P # P*. We have from (2) that

(14) 70 (@t) = = )P
and
(15) 9 1) = 29 (0)[P*).

It is well known (see, for example, Feller [3, p. 389]) that the limits of () and
79 (t) ast — o exist under our assumptions and are characterized by the relationships
(11)—(13) for P and P*, respectively: that is,

(16) 79 = lim w7 (t)

2 As for interpreting N as the growth factor see, for example, Nakamura [8].

# An irreducible, primitive stochastic matrix is called ‘“acyclic’’ or ‘“aperiodic’’ (see, for ex-
ample, Feller [3]). In certain cases it is possible to verify the aperiodicity and irreducibility of
P @) before we solve the problem. One such case, for instance, occurs when all elements of P are
forced to be positive.
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and

(17) 7P = limy e 7P (¢).

Since the programs have unique solutions, there must exist a T’ and a positive e such
that

(18) Z?—l zi‘ll'(i) (t)ci > Z?=1 zir*(i’ (t)ci + €
for all ¢ > T. Since y(0) is positive, the scalar in (8) must be positive. Moreover, since
(19) Yi(@0)/N = kai,

it must follow from (6), (9) and (18) that policy P* performs better in epoch ¢ than
policy P by an amount of roughly k (Aa)’e, which diverges with ¢ to plus infinity. This
completes the proof of the theorem.

4. Concluding Remarks

We have studied a class of programming problems which might occur in a system
consisting of n subsystems. The outputs of the subsystems are interrelated by linear
difference equations which specify the growth pattern of the output of the system as
a whole. The state of each subsystem is described by a finite Markov chain which
incurs a cost for each unit output of the subsystem as it occupies one of J states. The
problem of minimizing the total expected cost with respect to an n-tuple of stochastic
matrices over a sufficiently long period of time has been shown under certain condi-
tions to reduce to a collection of n independent programs. Each of these can be solved
by column generation techniques, and with that interpretation they become linear
programs to which a policy-improvement-type technique is applied (see, for example,
Mine and Osaki [7]). Finally we note that the basic idea in this paper can be applied
to more general models of the type considered by Denardo [1], Denardo and Fox [2]

and Wolfe and Dantzig [10].
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