

Biodiesel

 An alternative diesel fuel made from renewable biological sources such as vegetable oils and animal fats

"bio" represents the renewable and biological source in contrast to petroleum-based diesel fuel
"diesel" refers to its use in diesel engines

Utilization of Vegetable Oil

- Direct use and blending
 - Coking and Carbon deposits
 - Plugging and gumming of filters
 - Engine wear
- Microemulsions
 Carbon deposits

 - Injector needle sticking
- Thermal cracking
 - Removal of oxygen
 - Expensive equipment
- Transesterification
 - Effectively lowers the viscosity

Benefits of Biodiesel

- Significantly lower air pollutant emissions
- Can be blended with conventional diesel
- Enhanced lubricity for engines
- Allows for the recycling of waste vegetable oils
- More biodegradable and less toxic than conventional diesel
- Sustainable and renewable fuel

Biodiesel Emission

Emission	B100	B20
CO	-43.2%	-12.6%
HCs	-56.3%	-11.0%
NOx	+5.8%	+1.2%
CO ₂	-78.3%	-15.7%
Particulates	-55.4%	-18.0%
Air Toxics	-60 to -90%	-12 to -20%
Mutagenicity	-80 to -90%	-20%

Source: http://www.eere.energy.gov/biomass/pdfs/biodiesel_handling.pdf

Sociological Impact

- Local community connection
- Reconnect with cyclic nature of ecosystems
- Waste recycling system
- Reduce dependency on foreign fuels
- Raise awareness of renewable energy sources
- Promote agriculture

Transesterification Reaction Chemistry

- triglyceride
- alcohol
- esters
- glycerin

- Stepwise reaction
- •Removing the backbone of glycerin

Mechanism

Main factors affecting conversion rate

- Molar ratio of glycerides to alcohol
- Catalyst
- Reaction temperature and time
- Contents of free fatty acids and water

Stepwise Reactions

TG + MeOH
$$\stackrel{k1}{\longleftarrow}$$
 DG + FAME

DG + MeOH $\stackrel{k3}{\longleftarrow}$ MG + FAME

MG + MeOH $\stackrel{k5}{\longleftarrow}$ GI + FAME

Current Reaction Process Flow Diagram

Typical Soybean Oil Methyl Ester Profile

Fatty Acid	Weight Percent	Mol. Wt.	Formula
Palmitic	12.0	270.46	C ₁₅ H ₃₁ CO ₂ CH ₃
Stearic	5.0	298.52	C ₁₇ H ₃₅ CO ₂ CH ₃
Oleic	25.0	296.50	C ₁₇ H ₃₃ CO ₂ CH ₃
Linoleic	52.0	294.48	$CH_3(CH_2)_4CH=CHCH_2CH=CH(CH_2)_7CO_2CH_3$
Linolenic	6.0	292.46	$CH_3(CH_2CH=CH)_3(CH_2)_7CO_2CH_3$

Source: www.biodiesel.org/pdf_files/Weight&Formula.PDF

Sustainability -Carbon Life Cycle

Life Cycle Inventory

- Provides an inventory of environmental and energy flows to and from the environment.
- Examines global issues, such as CO₂ emissions.
- "Input efficiencies for fossil energy sources"

Energy Life Cycle Inventory

Fuel	Energy Yield	Net Energy
Gasoline	0.74	- 26%
Diesel	0.83	- 17%
Ethanol	1.34	+ 34%
Biodiesel	3.20	+ 220%

- •Biodiesel yields 3.2 units of fuel product energy for every unit of fossil energy consumed in its life cycle.
- •Biodiesel reduces net CO₂ emissions by 78.5% compared to petroleum diesel.

Source: www.mda.state.mn.us/ethanol/balance.html

History of Biodiesel Project at UBC

- Biodiesel production at UBC started by two students, Geoff and Peter
- SFU lent the 60L batch Biodiesel reactor
- Naoko Ellis started academic research
- Environmental Youth Alliance initiated community linkages
- Campus Sustainability Office

•1000 L/day semicontinuous process •Automatic

Automatic control system

- •Proof of concept on community scale model
- •Feasibility study for small communities

Overall Process Flow Diagram

Project Goals

- Provide community recycling plant and an environmentally clean energy source
- Provide skills training and education for young professionals
- Provide ongoing academic research into alternative clean fuels

Further Information

■ My website:

www.faculty.chml.ubc.ca/nellis/teaching

■ Environmental Youth Alliance:

www.eya.ca/biodiesel

Biodiesel

www.biodiesel.org