

# Optical Fibre Probes -Fundamentals and Applications

Xuqi Song Heping Cui Naoko Ellis

University of British Columbia Fluidization Research Centre



## Outline

Introduction **Optical Voidage Probe**  Calibration Methods Optical Velocity Probe Calibration Methods Solids Flux Measurement Applications



### Advantages High sensitivity Fast response Large dynamic range Small volume and light weight ■ Fire- and shock-resistance Corrosion proof Freedom from disturbance by electric and magnetic fields Insulation against high voltage Suitable for remote transmission Multi-channel detection Fluidization Research Centre



1) Transmission type









Fluidization Research Centre

Distance

## Particle-to-Probe Diameter Ratio



measuring area



time



measuring area





# Configurations **GENERATION** 1 **Emitting fiber Measurement region Receiving fiber Blind region**

### Key Factors for Probe Design

Blind Region (<u>Wrong information</u>)
Measurement Volume



Fluidization Research Centre

### **GENERATION 2**



### Advantages:

Easy to design

### Shortcomings:

Blind region

### remedied by adding a glass window

- Infinite measurement volume
- Not good for dense flow, small particles

# Particle Velocity Probes







Light emitting fibre

Light receiving fibre





Selection of suitable probe
Effect of particle property
Probe calibration
Noise and/or error analysis
Background noise, static, ...



**Probe** Calibration Full calibration ◆Whole range of actual operation Partial calibration ◆Assume a function Measure in empty column and packed bed Check before each experimental run



### Full Calibration methods

- Dropping/trapping technique
   Liquid-solids suspensions
- 3. FCC/Coke mixtures
- 4. FCC/polystyrene mixtures



Method 1: Dropping/ Trapping Technique





From Alan's Thesis





### Disadvantages:

- Difficult to obtain uniform distribution
- Impossible to reach dense suspension

# **UR**

### Method 3: FCC/coke Mixtures



# Calibration Curve: FCC/coke Mixtures





# Necessity of Tip Window



With Glass Window

Without Glass Window



# Method 4: FCC/Polystyrene Mixtures

**Particles** 

A series of 3-D uniform particles-transparent polymer mixture, covering various solid concentrations *from 0 to*  $\phi_{mf}$ 

### Advantages:

- Uniform particle distribution (constant)
- Various particle fractions



Calibration Curve: FCC/Polystyrene Mixtures









# UBC

### **Effective Separation Distance**





Fluidization Research Centre

UBC

### Solids Flux Measurements

 Simultaneous measurement of solids concentration and particle velocity

$$\overline{G_s} = \frac{1}{T} \int_0^T \rho_p \cdot V_p(t) \cdot (1 - \varepsilon(t)) \cdot dt \neq \rho_p \cdot \overline{V_p} \cdot (1 - \overline{\varepsilon})$$



### PV-4A system





Fluidization Research Centre

From Jinzhong Liu's Thesis

# Applications

- Voidage and velocity measurements in risers
- Voidage and velocity measurements in a fluid coker cold model
- Voidage measurement in bubbling and turbulent fluidized beds
- Solids RTD in a riser
- Recent studies in spouted beds



# Fluid Coker Cold Model Φ483 mm Venturi constriction Stripper section Ş Riser UBC



## Voidage Measurement in Fluid Coker Cold Model



Fluidization Research Centre

IR

# Voidage Distribution in Reactor Section



UBC

### Time-Mean Particle Velocity



Fluidization Research Centre

URC

# Core-Annulus Solids Flow Structure



![](_page_28_Picture_2.jpeg)

# Application to Turbulent and Bubbling Fluidized Beds

![](_page_29_Picture_1.jpeg)

![](_page_29_Picture_2.jpeg)

![](_page_29_Picture_3.jpeg)

# Local Voidage Fluctuations

D=1.56 m, z=0.84 m, U<sub>c</sub>=0.34 m/s, r/R=0.9

![](_page_30_Figure_2.jpeg)

![](_page_30_Picture_3.jpeg)

U=0.11 m/s

U=0.51 m/s

### Cell Concentration in Fermentation

![](_page_31_Figure_1.jpeg)

![](_page_31_Picture_2.jpeg)

Qin and Liu (1982): Cell concentration measurement using transmission-type optical fibre probe for glutamic acid fermentation. Fluidization Research Centre

Solid RTD Measurement using Phosphorescent Particle Tracer

Tracer particles:
Mixture of phosphorescent and FCC
Activating light:

UV light

Detection:

Optical fibre probe

![](_page_32_Picture_3.jpeg)

### Measurement Result in a Riser

![](_page_33_Figure_1.jpeg)

![](_page_33_Figure_2.jpeg)

![](_page_33_Picture_3.jpeg)

### Practical Operation of Probes

- Voidage Probe
- Velocity Probe
- Phosphorescent Particle Detection

![](_page_34_Picture_5.jpeg)

### Contacts

Optical Fibre Probe Application
 Dr. Naoko Ellis; nellis@chml.ubc.ca
 Dr. Xuqi Song; xsong@chml.ubc.ca

 Optical Fibre Probe Design and Fabrication
 Dr. Heping Cui hcui@membranereactor.com

![](_page_35_Picture_4.jpeg)

# Application and Its Potentials

### \* <u>Systems</u>

Gas-solid, gas-liquid, liquid-solid, gas-liquid-solid Dense and dilute

### \* <u>Parameters</u>

**Bubble** (bubble fraction, velocity & size distribution) **Emulsion** (voidage, phase fraction, motion direction)

Cluster(voidage, fraction, velocity & size distribution)Particles(velocity, fraction)Broth(phase fraction, voidage)

![](_page_36_Picture_6.jpeg)

# **Remarked Points**

### <sup>•</sup> <mark>Design</mark>

Blind spot Measurement volume Intrusion Electricstatic free and attrition free Size and its suitability to systems

### \* Application

Light properties of fluid and particles Probe selection and calibration Sampling accuracy (limit, data size, frequency)

### \* Signal Analysis

Possible zero shift Effective method to identify correct data Especially for velocity measurement

![](_page_37_Picture_8.jpeg)

FOUNTAIN BED SURFACE SPOUT ANNULUS SPOUT-ANNULUS INTERFACE CONICAL BASE

Case Study: Optical Velocity Probe Calibration and Application in Spouted Fluidized Bed

Investigation by Zhiguo Wang

System:

1.16 mm diameter glass beadsOptical velocity probeFibre diameter: 15 μm in 2.5mm bundles

![](_page_39_Figure_0.jpeg)

# Calibration using Rotating Plate

![](_page_40_Figure_1.jpeg)

# Calibration with Glass Window

![](_page_41_Figure_1.jpeg)

![](_page_41_Picture_2.jpeg)

# Spouted Bed Annulus

![](_page_42_Figure_1.jpeg)

![](_page_42_Picture_2.jpeg)