Mobile Devices and Embodied Learning

    Winn’s (2003) concept of “Umwelt” was interesting and it had me thinking about how we all “see” the world very differently. As students embody experiences, they make meaning through their interactions. Winn states that “..the uniqueness and variability of Umwelt are not the result of limited sensory capacity, which we saw above is a physiological constraint. Rather, they arise from differences in each individual’s experience of the environment” (p. 12). Stemming from this I consider about our students with learning challenges who have always interacted with their environment in different ways than neuro-typical students and how embodied learning provides opportunities for more inclusive education in all subject areas.

   Novak’s article (2014) was thought provoking. Grade three students were instructed in one of 3 types of problem solving strategies:

  1. physical action
  2. a concrete gesture miming that action
  3. an abstract gesture

All three types of strategies aided students in solving problems they were trained to solve, but the abstract gesturing was successful in applying this knowledge to general conditions. This gesturing led to deeper and more flexible learning. I found these results very surprising as an educator who was always told to incorporate the use of concrete manipulatives in math class. I have, however, used gesturing in science class teaching concepts such as the kinetic molecular theory and the movement of molecules and a applied the performing arts through a student-created play based on the digestive system. I am left wondering how we take this knowledge and apply gesturing into the teaching of mathematics? When I use Sphero with students, I have students use their bodies and arms to construct angles so that they understand the directions Sphero will roll on their commands, but I think using gesturing for more complicated tasks would be a challenge. Based on the works of Novack et all (2014) gestures were shown to foster generalization of math concepts – this was done without technology. How much of a role does technology or should technology play in Embodied Learning?

Finally, the article by Baya’a and Dahler (2009) I was not surprised in students’ positive perceptions of using mobile devices for learning mathematics and their role in embodied learning. The researchers found students enjoyed the novelty of using mobile devices especially within a mathematics class and that “mobile devices extend the learning environment in which the students work, and integrate it in real life situations where learning can occur in authentic contexts” (p. 6-7). Mobile devices offer the opportunity for learners to physically interact with the world outside of traditional classrooms. Coming back to students with learning (or physical) disabilities mobile technologies afford opportunities for students to interact with their environment in a ways that may not always be possible through traditional routes. In this study middle school students were using mobile technology in an outdoor education setting, using their own devices. How could we replicate the same positive educational experiences for our students using the hardware in our schools? How do we manage these tools within a school environment? Do we start with the technology and build the experience or the other way around? I was trying to reflect on how I have used mobile technology along the lines of this theory. What experiences do we as educators (and consumers of technology) have using mobile devices from an embodied learning perspective?

 

References

Bayaa, N. & Daher, W. (2009). Learning Mathematics in an Authentic Mobile Environment: The Perception of Students. International Journal of Interactive Mobile Technologies, 3, 6-14

Novack, M.A., Congdon, E.L., Hermani-Lopez, N., & Goldin-Meadows, S. (2014). From action to abstraction: Using the hands to learn math. Psychological Science, 25 (4), 903-910.

Winn, W. (2003). Learning in artificial environments: Embodiment, embeddedness, and dynamic adaptation. Technology, Instruction, Cognition and Learning, 1(1), 87-114.

Spam prevention powered by Akismet