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Some infectious diseases require management with parenteral therapy,Abstract
although the patient may not need hospitalisation. Consequently, the administra-
tion of intravenous antimicrobials in a home or infusion clinic setting has now
become commonplace. Outpatient parenteral antimicrobial therapy (OPAT) is
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considered safe, therapeutically effective and economical. A broad range of
infections can be successfully managed with OPAT, although this form of
treatment is unnecessary when oral therapy can be used. Many antimicrobials can
be employed for OPAT and the choice of agent(s) and regimen should be based
upon sound clinical and microbiological evidence. Assessments of cost and
convenience should be made subsequent to these primary treatment outcome
determinants. When designing an OPAT treatment regimen, the pharmacokinetic
and pharmacodynamic characteristics of the individual agents should also be
considered.

Pharmacokinetics (PK) is the study of the time course of absorption, distribu-
tion, metabolism and elimination of drugs (what the body does to the drug).
Clinical pharmacokinetic monitoring has been used to overcome the pharmaco-
kinetic variability of antimicrobials and enable individualised dosing regimens
that attain desirable antimicrobial serum concentrations. Pharmacodynamics (PD)
is the study of the relationship between the serum concentration of a drug and the
clinical response observed in a patient (what the drug does to the body). By
combining pharmacokinetic properties (peak [Cmax] or trough [Cmin] serum
concentrations, half-life, area under the curve) and pharmacodynamic properties
(susceptibility results, minimum inhibitory concentrations [MIC] or minimum
bactericidal concentrations [MBC], bactericidal or bacteriostatic killing, post-
antibiotic effects), unique PK/PD parameters or indices (t > MIC, Cmax/MIC,
AUC24/MIC) can be defined.

Depending on the killing characteristics of a given class of antimicrobials
(concentration-dependent or time-dependent), specific PK/PD parameters may
predict in vitro bacterial eradication rates and correlate with in vivo microbiologic
and clinical cures. An understanding of these principles will enable the clinician to
vary dosing schemes and design individualised dosing regimens to achieve
optimal PK/PD parameters and potentially improve patient outcomes. This paper
will review basic principles of useful PK/PD parameters for various classes of
antimicrobials as they may relate to OPAT.

In summary, OPAT has become an important treatment option for the manage-
ment of infectious diseases in the community setting. To optimise treatment
course outcomes, pharmacokinetic and pharmacodynamic properties of the indi-
vidual agents should be carefully considered when designing OPAT treatment
regimens.

1. Definition and Current Role of agement with parenteral therapy, although the pa-
Outpatient Parenteral Antimicrobial tient may not require hospitalisation. Twenty-five
Therapy (OPAT) years of experience has demonstrated that this treat-

ment modality can be undertaken in a safe and
The administration of intravenous antimicrobials

effective manner.[3-8] It is estimated that more thanin a home or infusion clinic setting has been popular
250 000 patients in the US alone are treated withsince the mid-1970s.[1,2] Outpatient parenteral anti-
OPAT each year, and that this practice is growing atmicrobial therapy (OPAT) arose from the recogni-

tion that some infectious diseases will require man- a rate of about 10% per annum.[9]

© Adis Data Information BV 2003. All rights reserved. Clin Pharmacokinet 2003; 42 (9)
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1.1 Benefits of OPAT 1.2 Infections Typically Managed with OPAT

The benefits of OPAT are numerous. Most im- A broad range of infections can be successfully
managed with OPAT and these have been wellportantly, however, is the fact that treatment of
described by Williams et al.[9] (table I) Although thepatients in a home or clinic setting reduces or elimi-
quality of evidence to support the use of OPAT as annates the need for a hospital bed and permits the
alternative to the traditional management of somepatient to remain in their natural setting during ther-
infections in a hospital setting remains somewhatapy. This in turn translates into both economic and
weak (no randomised clinical trials have been pub-quality of life benefits.
lished), the volume of documented evidence in sup-

We recently assessed the economic impact of our
port of this practice is nevertheless considerable.

OPAT programme. Over a 3-year assessment period
Infections that can be effectively managed within a two-site hospital, we successfully completed

oral therapy should not involve the use of OPAT.140 treatment courses and realised an overall cost
Although intravenous-to-oral stepdown therapy hasavoidance of Canadian dollars ($Can) 1 730 520
been traditionally described in the context of treat-(hospital perspective) and $Can 1 009 450 (Ministry
ment in the hospital setting, this practice should alsoof Health perspective).[10] Similar achievements
apply to OPAT.have been described by others.[11-14] When extrapo-

lated to all centres and programmes providing
OPAT, the cost avoidance associated with this form
of therapy is significant.

The benefits of OPAT should be measured not
only in terms of clinical outcomes and costs, but also
in terms of patient preferences and health-related
quality of life (HRQOL). We recently conducted
two multidisciplinary, single-centre, prospective in-
vestigations at a 1000-bed Canadian adult tertiary
care teaching hospital to address these issues.[15] In a
9-month study designed to elicit treatment location
preferences and willingness-to-pay (WTP) from pa-
tients referred to our OPAT programme, we deter-
mined that 89% of the patients preferred treatment at
home, whereas the remaining 11% of patients pre-
ferred treatment in the hospital setting. In a parallel
15-month investigation of HRQOL for 134 patients
who were actually enrolled in our OPAT pro-
gramme, we were also able to demonstrate that
patients experienced a significant improvement in
three SF-36 domains (physical functioning, bodily
pain and role emotional) and the mental component
summary scale scores when they were transferred
from the hospital to home setting. To our knowledge
these are the first published preliminary reports of
this type that involve an assessment of adult OPAT
programme patients.

Table I. Infections that have been managed by outpatient parenter-
al antimicrobial therapy (from Williams et al.,[9] with permission)a

System Infection

Central nervous system Meningitis, brain and epidural
abscesses

Ear, nose, throat Sinusitis (complicated), chronic otitis/
mastoiditis

Cardiovascular Endocarditis

Respiratory Cystic fibrosis (infectious
exacerbations), pneumonia/severe lower
respiratory infections

Intra-abdominal and Hepatic abscess, peritonitis, intra-
surrounding abdominal abscess, tubo-ovarian

abscess/pelvic inflammatory disease,
splenic abscess

Urinary tract Pyelonephritis, perinephric abscess and
other, complicated urinary tract
infections

Dermatological Cellulitis, soft tissue, wound

Bone and joint Osteomyelitis, septic arthritis/bursitis,
prosthetic joint infections

Other Intravenous access–associated,
vascular graft infections, Lyme disease,
neutropenic fever, bacteraemia,
fungaemia/systemic mycoses,
cytomegalovirus and other viral
infections

a Management of an infection may warrant hospitalisation for
the initial assessment, commencement of parenteral
antimicrobial treatment and potential need for intensive
medical intervention. This is particularly important for
compromised patients and serious infections in which rapid
decompensation may occur.

© Adis Data Information BV 2003. All rights reserved. Clin Pharmacokinet 2003; 42 (9)
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1.3 Antimicrobials Typically Used for OPAT should be considered to maximise the likelihood that
the desired outcome can be achieved.

The type of antimicrobials employed for OPAT
2. Pharmacokinetic Propertiesis almost as varied as the infections that have been
of Antimicrobialsmanaged. Antimicrobials used for OPAT typically

include those agents that cannot be administered
The pharmacological characteristics of an-

orally and for which there are no suitable oral alter- timicrobials can be stratified into two distinct com-
native agents because of infection, microbial sus- ponents, namely pharmacokinetics and pharmaco-
ceptibility and/or patient factors. dynamics (table III).[16-26] Pharmacokinetics is the

Although many previously published OPAT se- study of the time course of the primary pharmaco-
ries have focused on the use of cephalosporins for kinetic processes of absorption, distribution, meta-
outpatient intravenous therapy,[9] we have tended to bolism, and elimination of antimicrobials, and the

overall disposition of drug in the body. The rate andutilise a broad group of agents in our practice (table
extent of each of these individual processes deter-II).[8] When multiple antimicrobials are being con-
mines the serum concentration-time profile for thesidered as alternatives for the management of a
antimicrobial in a given patient. Thus pharmaco-particular infection, the choice of drug(s) and regi-
kinetics reflects ‘what the body does to the drug’.men for OPAT therapy should be based upon sound
Pharmacodynamics is the study of the actions ofclinical and microbiological evidence that these
drugs, and more specifically the relationship be-agents are safe and effective for the infection(s)
tween the serum antimicrobial concentration andinvolved. Cost and convenience of administration
pharmacological effect. Accordingly, pharmaco-should only be considered after these primary deter-
dynamics reflects ‘what the drug does to the body’.minants of treatment outcome have been assessed to

The concentration-response relationship of anti-establish the optimal treatment plan for a patient.
microbial agents is very complex, and neither phar-When designing the treatment regimen for use in an
macokinetic nor pharmacodynamic characteristicsOPAT setting, the pharmacokinetic and pharmaco-
alone can adequately describe the unique interac-

dynamic characteristics of the individual agents
tions between the pathogen, host and antimicrobial
agent during an infectious disease process. The anti-
microbial activity time course is variable and a
result of the complex interplay between these
properties. Through the application of our current
understanding of these properties, we should be able
to optimise antimicrobial killing, improve microbio-
logical eradication, increase clinical cure rates, im-
prove patient outcomes and quality of life, prevent
the development of microbial resistance, and reduce
the costs and inconvenience of therapy.

The effectiveness of antimicrobial drugs is influ-
enced by the kinetics of microbial growth and the
drug concentration in the environment of these mi-
crobes. The concentration of an antimicrobial drug
at the site of an infection typically changes with
time, and rises and falls in a pattern that tends to
parallel the changes in serum antimicrobial concen-
trations resulting from the intermittent administra-

Table II.  Antimicrobial utilisation for outpatient parenteral anti-
microbial therapya

Agent Patients (%)

Vancomycin ± other antimicrobials 30

Cloxacillin ± gentamicin 24

Penicillin ± other antimicrobials 10

Ceftriaxone ± gentamicin 8

Ganciclovir 8

Cefazolin 4

Ceftazidime + (tobramycin or 4
gentamicin)

Ampicillin ± other antimicrobials 3

Gentamicin 2

Otherb 7
a Series of 379 patients over 6 years, updated from Stiver et

al.[8]

b Includes ceftizoxime, foscarnet, amphotericin B, piperacillin +
tobramycin, clindamycin, acyclovir, amikacin, meropenem,
aztreonam, imipenem, fluconazole, chloramphenicol,
stibogluconate, tobramycin and piperacillin/tazobactam.

© Adis Data Information BV 2003. All rights reserved. Clin Pharmacokinet 2003; 42 (9)
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tion of an antimicrobial.[31] Clinicians have used portant consideration for patients who are candi-
clinical pharmacokinetic monitoring of antimicrobi- dates for oral therapy (e.g. patients with less serious
als in an attempt to optimise antimicrobial therapy. infections, outpatients, and those who meet the crite-
An understanding of the pharmacokinetics of an- ria for intravenous-to-oral stepdown therapy),
timicrobials enables the clinician to predict and OPAT programmes inherently involve the adminis-
achieve serum antimicrobial concentrations that tration of antimicrobials via the intravenous route
may be associated with a desired pharmacological with the assumption that oral therapy is not clinical-
effect, and avoid those that are associated with treat- ly feasible.[26,34-38]

ment failure or toxicity. Using population-based
pharmacokinetic parameters, clinicians routinely in- 2.2 Distribution
itiate standard empirical regimens in an attempt to
achieve target serum antimicrobial concentrations. The apparent volume of distribution (Vd) is de-
Unfortunately, the administration of standard anti- fined as the volume in which the total amount of the
microbial dosage regimens does not always result in drug in the body (A) would have to be uniformly
the achievement of desired serum antimicrobial con- distributed in order to result in the observed serum
centrations because of patient-specific variability in drug concentration. Simply stated, it reflects the
absorption, distribution, metabolism and elimina- ratio of the amount of drug in the body to the serum
tion.[32] Thus, for selected antimicrobials (partic- drug concentration. The Vd of a drug indicates the
ularly those with narrow therapeutic indices), tendency of the drug to stay or leave the blood-
clinicians have used patient-specific clinical phar- stream, which in turn is related to the inherent
macokinetic monitoring to determine pharmacokin- properties of the drug, including polarity, affinity for
etic parameters, individualise antimicrobial dosage protein binding and molecular size. Although the Vd
regimens, and achieve predefined target serum anti- of a drug does not correspond to any particular
microbial concentrations. For those antimicrobials anatomical space, it does provide information as to
not amenable to patient-specific clinical pharmaco- how widely the drug tends to distribute throughout
kinetic monitoring (e.g. β-lactams), population- the body. Most antimicrobials have a Vd of
based pharmacokinetic parameter estimates must 0.15–0.40 L/kg total bodyweight, although there are
still be applied to design effective antimicrobial a few notable exceptions. Vancomycin has a Vd of
regimens. approximately 0.7 L/kg, and fluoroquinolones have

a Vd of approximately 4 L/kg.[39] The clinical rele-
vance of Vd is that this parameter can be used to2.1 Absorption
estimate the dose of an antimicrobial required to

Drug absorption is affected by the physicochemi- achieve a particular serum concentration. This has
cal properties of the drug, the formulation, gastroin- clinical utility when determining an initial loading
testinal tract motility, transit time, blood flow, gas- dose for an antimicrobial regimen. When used in
trointestinal contents and pH, drug-drug or drug- combination with other pharmacokinetic parameters
food interactions, gut wall metabolism, hepatic first (i.e. serum elimination half-life), knowing the Vd of
pass metabolism and other factors. Bioavailability is a drug also helps to estimate the maximum (Cmax)
defined as the extent of drug transfer from the site of and minimum (Cmin) serum antimicrobial concen-
administration to the systemic circulation. Many of trations that can be achieved with a particular dos-
the newer antimicrobial agents (e.g. fluoroquino- age regimen. The ability to estimate a Vd for a
lones) can be administered orally, have an excellent patient, along with the knowledge of other pharma-
bioavailability, and achieve serum antimicrobial cokinetic parameters (e.g. distribution characteris-
concentrations that are almost equivalent to those tics into body compartments such as cerebrospinal
obtained when the same drug is administered intra- fluid, prostatic fluid, joint fluid, respiratory tissues
venously.[24,27,33] (table IV). Although this is an im- and other anatomical sites) can assist us in our

© Adis Data Information BV 2003. All rights reserved. Clin Pharmacokinet 2003; 42 (9)
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Table III. Some pharmacokinetic and pharmacodynamic characteristics of selected antimicrobials[16-25,27-30]

Representative agents Candidate Pharmacokinetic propertiesb Pharmacodynamic properties
for OPATa

F (%) Vd (L/kg) t1/2β (h) dosage activityc killing Gram- PK-PD parameter best
interval (h) negative correlating with clinical

PAE efficacy
β-Lactams
Benzylpenicillin and 2 15 (60) 0.29 0.5 4–6 Bactericidal T N t>MIC
phenoxymethylpenicillin (oral)
Cloxacillin 2 50 0.08–0.11 0.5 4–6 Bactericidal T N t>MIC
Ampicillin and amoxicillind 40 (75) 0.18–0.35 1.0 4–6 Bactericidal T N t>MIC
Piperacillind 1 0.15–0.21 1.3 4–6 Bactericidal T N t>MIC
Ticarcillind 1 0.17–0.25 1.2 4–6 Bactericidal T N t>MIC
Cefazolin 1 0.10–0.18 1.8 8 Bactericidal T N t>MIC
Cefuroxime (axetil) 2 52 0.16–0.24 1.3 8 Bactericidal T N t>MIC
Ceftriaxone 1 0.13–0.19 8.0 12–24 Bactericidal T N t>MIC
Ceftazidime 1 0.21–0.25 1.8 8 Bactericidal T N t>MIC
Imipenem 1 0.18–0.28 1.0 6 Bactericidal T Y t>MIC
Meropenem 1 0.37–0.49 1.0 8 Bactericidal T Y t>MIC
Aztreonam 1 0.14–0.18 2.0 8 Bactericidal T N t>MIC

Glycopeptides
Vancomycin 1 0.7–0.9 6–8 12 Bactericidal T N t>MIC, AUC/MIC

Fluoroquinolones
Ciprofloxacin 2 70–85 1.7–3.7 2.5–5.3 12 Bactericidal C Y Cmax/MIC, AUC/MIC
Levofloxacin 2 85–95 1.2–1.5 6.5–7.4 12–24 Bactericidal C Y Cmax/MIC, AUC/MIC
Gatifloxacin 2 95 1.5–2.2 6.5–8.4 24 Bactericidal C Y Cmax/MIC, AUC/MIC
Moxifloxacin 2 85 2.1–3.5 9.1–15.6 24 Bactericidal C Y Cmax/MIC, AUC/MIC

Aminoglycosides
Gentamicin 1 0.21–0.41 2.5 8–24 Bactericidal C Y Cmax/MIC, AUC/MIC
Tobramycin 1 0.25–0.41 2.5 8–24 Bactericidal C Y Cmax/MIC, AUC/MIC
Amikacin 1 0.21–0.33 2.5 8–24 Bactericidal C Y Cmax/MIC, AUC/MIC

Macrolides
Erythromycin 2 18–45 0.34–1.2 2–4 6 Bacteriostatic T N t>MIC
Clarithromycin 4 50 2.1–3.1 5–7 12 Bacteriostatic T N t>MIC
Azithromycin 2 37 31 24 Bacteriostatic T N AUC/MIC

Lincosamides
Clindamycin 3 90 0.8–1.4 2.4 8 Bacteriostatic T N t>MIC

Continued next page
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attempts to estimate the antimicrobial concentration
at the site of an infection. Many antimicrobials do
not distribute well into all body tissues and fluids,
and this is an important consideration when choos-
ing antimicrobial therapy for deep-seated infections
such as endocarditis, osteomyelitis and meningitis.

2.3 Metabolism

Antimicrobials are typically metabolised hepati-
cally or eliminated unchanged in the urine or faeces.
Agents that undergo hepatic metabolism may be
broken down in phase I reactions via the cytochrome
P450 system, and then conjugated during phase II
reactions. Liver blood flow, the fraction of unbound
drug, the intrinsic hepatic metabolic activity, and
liver disease such as alcoholic cirrhosis can alter the
metabolism of drugs cleared by the liver. Dosage
reductions are usually recommended for hepatically
cleared antimicrobials (e.g. macrolides, cotrix-
omazole [trimethoprim-sulfamethoxazole]) in pa-
tients with serious liver dysfunction or disease.[31] A
more common problem for these drugs, however, is
the impact of drug-drug interactions involving an-
timicrobials and other drugs that act as cytochrome
P450 system enzyme inhibitors or inducers.[40-44]

When administered concurrently with antimicrobial
agents, some cytochrome P450 system enzyme in-
hibitors (e.g. cimetidine) can cause clinically impor-
tant increases in serum drug concentrations, result-
ing in concentration-related drug effects including
gastrointestinal and CNS toxicities, QTc prolonga-
tion and other complications.[40-44] Conversely,
some drug interactions may lead to subtherapeutic
antimicrobial concentrations and clinical failures
(e.g. itraconazole plus phenytoin).[45-47] Some an-
timicrobials themselves are potent enzyme inhibi-
tors or inducers (e.g. erythromycin, ketoconazole,
ciprofloxacin, rifampicin [rifampin]) and thus can
affect the pharmacokinetic profiles of other medica-
tions, leading to adverse drug effects and/or clinical
failures.[45-49]

2.4 Elimination

The serum elimination half-life (t1/2β) of an anti-
microbial drug is defined as the time required for the

© Adis Data Information BV 2003. All rights reserved. Clin Pharmacokinet 2003; 42 (9)
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loading dose is required to rapidly achieve therapeu-
tic serum concentrations. The t1/2β is determined by
the volume of distribution and the sum of clearance
by all organs independently contributing to overall
drug clearance. Thus, the t1/2β of the antimicrobial is
influenced by changes in clinical factors that affect
the volume of distribution of the drug (e.g. albumin
concentration, hydration status or concomitant
medical conditions such as malnutrition, pregnancy,
heart failure, thermal injury, critical illness or organ
failure) and/or the organ systems responsible for
elimination (e.g. drug or disease-altered renal or
hepatic function). All of these factors must be con-
sidered when choosing an antimicrobial agent and
determining an appropriate dosage regimen.

The reported serum t1/2β range of commonly em-
ployed antimicrobial drugs in the average adult pa-
tient is quite wide (figure 1, table III).[26] Inter- and
intrapatient variability can also be significant. Most
β-lactam drugs have a serum t1/2β of less than 2 hours
(with a few notable exceptions that will be discussed
later), aminoglycosides tend to exhibit serum t1/2β in
the range of 2–4 hours, and vancomycin usually has
a serum t1/2β of 6–8 hours. In the face of renal
impairment, some antimicrobial agents may further
aggravate organ dysfunction (e.g. aminoglycosides),
and safer alternatives may have to be used. More-
over, the serum t1/2β of agents such as aminoglyco-
sides may vary unpredictably in the presence of
fluctuating organ function, which may also make an
agent with a broader therapeutic index or an alterna-
tive route of elimination more attractive. Converse-
ly, if the use of an antimicrobial in the presence of
organ dysfunction is considered safe, a dosage mod-
ification enabling the use of lower doses (e.g. vanco-
mycin every 24–36 hours) may be an advantage for

Table IV. Oral bioavailability of antimicrobial agents

Average Agent Variable
bioavailability bioavailabilityb

(%)a

>80 Amoxicillin Yes

Cefaclor No

Cefadroxil No

Cefalexin No

Clindamycinc No

Cotrimoxazole (trimethoprim- No
sulfamethoxazole)c

Doxycycline Yes

Fluconazolec No

Gatifloxacinc Yes

Levofloxacinc Yes

Metronidazolec No

Moxifloxacinc Yes

Ofloxacin Yes

Rifampicin No

51–80 Ampicillinc Yes

Ciprofloxacinc Yes

Clarithromycin No

Cloxacillinc Yes

Phenoxymethylpenicillin No

Tetracyclinec Yes

Valaciclovir No

<50 Acyclovirc No

Azithromycinc Yes

Benzylpenicillinc Yes

Cefixime Yes

Cefuroxime axetilc Yes

Erythromycinc Yes

Norfloxacin Yes
a Typical reported unimpeded bioavailability (oral AUC/

intravenous AUC) in adult patients.[26]

b Bioavailability is highly variable (range varies by ≥20%) when
the drug is administered under conditions in which the
presence of food or other drug products (e.g. antacids) may
interfere with absorption from the gastrointestinal tract.

c Available in a parenteral dosage form.

AUC = area under the concentration-time curve.
convenience of administration and may be less cost-
ly.

drug to fall to 50% of its former concentration in the
serum as a result of elimination from the body. This 2.5 Area Under the
reduction in concentration parallels the reduction of Concentration-Time Curve
total drug in the body, and is usually calculated once
drug absorption and distribution have been complet- Area under the concentration-time curve (AUC)
ed. The t1/2β helps to determine how long it will take is a pharmacokinetic parameter that can be calculat-
to achieve steady-state serum antimicrobial concen- ed as bioavailability (F) times dose (D) divided by
trations, and may help to determine if an initial total body clearance (CL). The AUC can be thought
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Fig. 1. Serum elimination half-lives of various antimicrobials (modified from Jewesson,[26] with permission). 

of as the overall exposure over time of the host (and 2).[50] This adds a third dimension to an existing
infecting microorganism) to the antimicrobial agent, complex set of interactions between the drug and the
as it takes into account both the magnitude and patient. The interplay between these three compon-
duration of drug exposure. Accordingly, for anti- ents of antimicrobial pharmacology is very impor-
microbial agents administered via the oral route, tant, because dose-concentration relationships are
bioavailability is an important determinant of the only useful if a certain concentration produces the
exposure of the host and microorganism to the anti- desired pharmacological response.
microbial agent. Since some antimicrobial agents Our knowledge of the clinical pharmaco-
can demonstrate significant interpatient (and in- dynamics of anti-infective agents has increased sub-
trapatient) bioavailability (table IV), this route of stantially over the past decade. Traditionally, in
administration may not be clinically feasible when vitro susceptibility testing using Kirbey Bauer or
designing a treatment course for some infections. microtitre techniques have been used to quantify the
For intravenous antimicrobials, this concern is mini- intrinsic activity of antimicrobial agents by deter-
mised as only changes in dose or clearance will mining the minimum inhibitory concentration
affect the AUC, and the overall exposure over time (MIC) or minimum bactericidal concentration
of the host and microorganism to the antimicrobial (MBC) for the antimicrobial against a given inocu-
agent. lum of a bacterium.[32] These methods have been

used to characterise the lethality of antimicrobials as
3. Pharmacodynamic Properties bacteriostatic or bactericidal agents. Unfortunately,
of Antimicrobials

The time course of antimicrobial activity is varia-
ble, and is the result of the complex interplay be-
tween antimicrobial pharmacokinetics and
pharmacodynamics. From a clinical perspective,
pharmacodynamics can be described as the relation-
ship between drug concentration and patient res-
ponse. Drugs generally demonstrate a predictable in
vitro dose-response relationship that can be ex-
plained by the interactions between the drug and
receptor sites. In the case of antimicrobials however,
the receptor sites of interest are not situated in the
patient receiving the drug, but are located in the
pathogens that have assaulted the host tissues (figure

Activity
('cidal or
'static)

Resistance

Immune
system

Cell
damage

Toxicity

Bacteria

Pharmaco-
kinetics

Host

Antimicrobial
agent

Fig. 2. Drug-pathogen-host relationship (from Jewesson,[50] with
permission).
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there are limitations to this procedure, and research- may be much lower than that present for many
ers have adopted time-kill curves to better delineate infections, and the ability of antimicrobials may be
the time course of antimicrobial activity. Time-kill overestimated (inoculum effect) because of the pres-
curves are employed to determine whether an- ence of a large number of high-MIC organisms in
timicrobials possess concentration-dependent or the in vivo setting. This in vitro testing procedure is
time-dependent killing profiles, and also to enable devoid of immune cells and complement that con-
the identification of antimicrobial effects that may tribute to antimicrobial activity, and of plasma pro-
persist once antimicrobial concentrations have fall- teins, which may decrease antimicrobial activity in
en to negligible levels.[51,52] Moreover, time-kill the host by reducing the concentration of free, active
curves enable us to examine  the pharmaco- drug. Moreover, as this method tests static concen-
dynamics of antimicrobials both alone and  in trations of antimicrobial agents, it cannot delineate
combination.[53] In vitro models have been devel- the time-course of antimicrobial activity and it can-
oped that attempt to more closely simulate the fluc- not provide any information on the effect of anti-
tuations in antimicrobial concentrations in the microbial concentrations above or below the MIC.
human host at the site of infection.[54] In vitro mod- Finally, reporting susceptibility results nominally as
els appear to be able to predict the pharmacokinetic/ sensitive or resistant implies an all-or-none res-
pharmacodynamic parameters associated with effi- ponse, which is not the case because in vitro suscep-
cacy in in vivo studies.[54,55] In vivo animal models tibility is only one factor contributing to the success
are used to characterise the activity of antimicrobials of an antimicrobial regimen.
in the setting of a host immune system, and have

3.2 Bacteriostatic Versus Bactericidal Activityhighlighted how the presence of a host immune
system is an important contributor to the interaction

In vitro susceptibility testing has enabled the
between the antimicrobial and microorganism.[52]

clinician to categorise antimicrobial agents based on
Data from in vitro and animal models have enabled

the lethality of their killing. Bacteriostatic agents are
us to identify integrated pharmacokinetic-pharma-

those that inhibit growth of microorganisms, but
codynamic parameters that predict in vitro anti-

require a much higher concentration to kill the or-
microbial activity as well as in vivo microbiological

ganisms. That is, they have MBC values much
eradication and clinical cures.[32,52,55-62] Although

higher than their MIC for a given organism. Most
our understanding is far from complete, some

bacteriostatic agents are inhibitors of protein synthe-
human studies have already shown that achieving

sis (table III). Bactericidal agents are able to kill
certain magnitudes of these integrated pharmacokin-

microorganisms at similar concentrations to those
etic-pharmacodynamic parameters may lead to fast-

that inhibit them. That is, their in vitro MBC values
er bacterial eradication, higher clinical cure rates

are similar to their MIC values. Most bactericidal
and a reduction in the development of resis-

agents inhibit cell wall or DNA synthesis. Bacterici-
tance.[61,63]

dal agents should be used wherever possible for
serious infections, particularly in immunocompro-

3.1 Susceptibility Testing mised patients. Although classification of an-
timicrobials as bacteriostatic or bactericidal does

Although MIC susceptibility testing is an accept-
describe their lethality, it does not describe the rela-

ed standard for quantifying antimicrobial activity, it
tionship between antimicrobial concentration and

does not always predict clinical success, and has
the time course of killing.

some inherent limitations. Artificial growth condi-
tions are employed with organisms usually in the 3.3 Antimicrobial Killing Characteristics
growth phase and in the setting of an ideal tempera-
ture and pH, abundant nutrient and oxygen supply, Time-kill studies are conducted to examine the
and unique cation content.[51,52] The inoculum size interaction between an antimicrobial with a standard
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inoculum of bacteria over time. These studies in- and rifampicin (table III). Antimicrobial regimens
for concentration-dependent kill agents are typicallyvolve the assessment of the relationship of time
designed to take advantage of this property andversus the log CFU/mL of the bacterial inoculum,
involve the administration of larger doses less fre-and can be used to determine the rate and extent of
quently. This has been the pharmacodynamic impe-bactericidal killing, and characterise the anti-
tus behind the administration of high-dose extend-microbial as a concentration-dependent or time-de-
ed-interval aminoglycoside therapy.pendent kill agent (figure 3).[64,65]

Antimicrobials with time-dependent killing also
For antimicrobials with concentration-dependent exhibit a greater rate and extent of bactericidal ac-

killing characteristics, increasing concentrations of tivity with increasing antimicrobial concentrations,
the antimicrobial leads to a greater rate and extent of however only up to a certain multiple of the MIC.
bactericidal activity across a wide range of anti- That is, they have saturable killing characteristics
microbial concentrations. Agents exhibiting concen- that tend to plateau at about 4–5 times the MIC.[32]

tration-dependent killing classically include the Thus, the extent of killing is largely dependent on
fluoroquinolones, aminoglycosides, metronidazole the duration of antimicrobial-pathogen exposure.

Serum concentrations (as a reflection of drug
concentration at the site of infection) should
ideally be maintained above some multiple of
the MIC.  Agents exhibiting time-dependent kill-
ing classically  include β-lactams (penicillins, ceph-
alosporins, monobactams, carbapenems), macroli-
des and clindamycin (table III). Antimicrobial regi-
mens designed to administer smaller doses more
frequently exploit the killing characteristics of time-
dependent antimicrobials, and this has been the
pharmacodynamic impetus driving the investigation
of continuous infusion β-lactam and vancomycin
therapy.

3.4 Post-Antibiotic Effect

Time-kill studies have also enabled us to charac-
terise the persistence effect, or post-antibiotic effect
(PAE), of antimicrobial agents.[32] The PAE can be
described as the period during which bacterial
growth continues to be suppressed subsequent to
discontinuing the exposure of that pathogen to an
antimicrobial drug. The PAE reflects bacterial re-
covery time and is probably the result of several
mechanisms, including non-lethal damage (i.e. mor-
phological changes) caused by the antimicrobial,
continued persistence of the drug at the bacterial
drug-receptor binding sites after concentrations of
the drug are no longer detectable, and an increased
susceptibility of bacteria to intracellular killing or
phagocytosis by leucocytes.[32,52,66] The PAE is in-
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Fig. 3. Time-kill curve (time versus bacterial colony count) showing
(a) concentration-dependent killing and (b) time-dependent killing
(reproduced from Craig & Ebert,[64,65] with permission). CFU =
colony-forming units; MIC = minimum inhibitory concentration.
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fluenced by several factors, including the type of mines the ultimate effect from antimicrobial ther-
microorganism, inoculum, the concentration, dura- apy. The pharmacokinetic characteristics of an anti-
tion and type of antimicrobial agent, and the pres- microbial (e.g. Cmax, AUC, Cmin) determine the
ence of immune cells. Almost all antimicrobials dosage requirements necessary to achieve target
exhibit in vitro PAE of about 1–2 hours duration drug concentrations, whereas its pharmacodynamic
against susceptible Gram-positive organisms, such and susceptibility characteristics (e.g. MIC) deter-
as staphylococci and streptococci.[63] Inhibitors of mine the ultimate clinical effect. When considered
protein and nucleic acid synthesis (e.g. aminoglyco- independently, neither the pharmacokinetic nor
sides, fluoroquinolones, tetracyclines, macrolides, pharmacodynamic parameters of a drug can ade-
chloramphenicol, rifampicin) have a prolonged in quately predict antimicrobial clinical efficacy.
vitro PAE against Gram-negative bacteria for up to Determining patient-specific pharmacokinetic
4 hours. In contrast, most β-lactams tend to exhibit and pharmacodynamic data has been proposed to
no significant PAE against Gram-negative organ- achieve ‘dual individualisation’ of a drug regi-
isms.[65] Carbapenems (e.g. imipenem, meropenem), men.[35,68-70] Proponents of this approach argue that
are an exception and tend to exhibit a prolonged population estimates of pharmacokinetic parameters
PAE against Gram-negative bacteria.[32] The dura- do not accurately predict actual drug disposition for
tion of the in vitro PAE can be concentration-depen- an individual patient due to significant inter- and
dent, and synergistic with certain antimicrobial intra-patient variability. Similarly, literature-derived
combinations. The duration of the in vitro PAE,

MIC data for a particular pathogen may not accu-
however, is not always predictive of the in vivo

rately reflect the actual susceptibility patterns of the
PAE. For example, penicillins exhibit a significant

pathogen(s) responsible for a specific infection. It
in vitro PAE against streptococci, but no in vivo

stands to reason, therefore, that if we were able toPAE can be demonstrated.[63] In most cases, the in
determine patient-specific pharmacokinetic andvitro PAE underestimates the in vivo PAE, and this
pharmacodynamic parameters, we would be able tomay be explained, in part, by a post-antimicrobial
apply known pharmacokinetic-pharmacodynamicleucocyte-enhancing effect. Studies have shown that
characteristics for a drug and individualise (andthe presence of neutrophils may actually double the
optimise) the dosage regimen employed. Althoughduration of PAE against Gram-negative organisms
this method appears attractive, there are some prac-for aminoglycosides and fluoroquinolones, but may
tical drawbacks that currently impede routine clin-have no major effect for β-lactams.[32] This en-
ical application.hanced in vivo effect partially explains why we can

Currently, only three quantifiable pharmacokine-effectively administer antimicrobials with short se-
tic-pharmacodynamic parameters have been thor-rum elimination half-lives at reasonable dosage in-
oughly investigated as surrogate predictors of anti-tervals (e.g. benzylpenicillin every 6 hours). Finally,
microbial efficacy. The first is the ratio of the maxi-we must remember that for most patients, the anti-
mum serum antimicrobial concentration undermicrobial rarely cures the infection outright. Rather,
steady-state conditions (Cmax) to the minimum in-the antimicrobial usually buys us precious time to
hibitory concentration (Cmax/MIC). The second pre-permit the patient’s own host defences to re-
dictor of efficacy is the duration of time for whichcover.[50,67]

antimicrobial concentrations exceed the minimum
inhibitory concentration (t>MIC) The third predic-4. Integrated Pharmacokinetic-
tor is the ratio of the area under the concentration-Pharmacodynamic Parameters
time curve during a 24-hour administration interval
to the minimum inhibitory concentration (AUC24/The complex inter-relationship of pharmaco-
MIC). This last measure is sometimes called areakinetics and pharmacodynamics between the host,

antimicrobial agent, and organism is what deter- under the inhibitory curve (AUIC), although techni-
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cally AUIC is the area under the curve of the inverse tropenic hosts, t>MIC should be ≥50–60% and
serum inhibitory titre versus time (SIT–1 • h) over a ≥90–100% for β-lactam agents with and without a
24-hour period.[70] In general, Cmax/MIC or AUC24/ PAE for the designated pathogen, respectively.[61] In
MIC appear to correlate best with clinical efficacy a retrospective study involving paediatric patients
for antimicrobials that exhibit concentration-depen- with Streptococcus pneumoniae- or Haemophilus
dent killing, whereas t>MIC correlates best for influenzae-associated otitis media, Craig & Andes
drugs with time-dependent kill characteris- found a significant correlation between t>MIC of
tics.[32,52,55-63] Unfortunately, since there is a direct >40% and bacteriological cure rates.[75] Schentag et
relationship between all three of these pharmacokin- al. examined prospective, dual-individualised, dos-
etic-pharmacodynamic parameters, there is consid- age adjustments to standard therapy and found a
erable covariance when dosage regimens are adjust- significant correlation between t>MIC and AUC24/
ed solely by dose or interval in pharmacodynamic MIC in patients with Gram-negative nosocomial
studies. This has led to conflicting data in the litera- pneumonia. Patients who achieved an AUC24/MIC
ture as to which parameters most accurately predict ratio of >140 had more rapid microbiological eradi-
efficacy and the development of resistance. cation of the pathogen, and a shorter duration of
Schentag et al. have proposed AUIC as a universal antimicrobial treatment.[68]

surrogate end-point for different classes of an- A logical extension of the pharmacodynamic
timicrobials,[53,70,71] with a critical threshold of 125. principles of β-lactam agents would be to administer
This parameter takes into account the degree and short elimination half-life agents via a continuous
extent of antimicrobial exposure over time. Al- infusion to exploit their time-dependent pharmaco-
though a universal surrogate threshold would be dynamic properties and maximise t>MIC. In addi-
desirable, there is some controversy regarding its tion to being able to achieve a greater t>MIC at the
universality and the applicability of this parameter site of infection and thus theoretically an improved
threshold to clinical situations such as the outpatient clinical response rates, other potential benefits of
management of Gram-positive infections.[60,62]

continuous infusion β-lactam regimens could in-
clude fewer concentration-dependent adverse drug5. Pharmacodynamic Properties of effects and the convenience associated with theSelect Antimicrobials once-daily set up and delivery of the drug. If lower
daily doses could be employed to achieve the same

5.1 β-Lactams clinical response, drug acquisition cost savings
would also be possible.

β-Lactams exhibit time-dependent killing, and
Unfortunately, there are some realised limitationsdata from in vitro and animal models suggest that

of continuous infusion β-lactams, including drugt>MIC is the pharmacokinetic-pharmacodynamic
stability and compatibility problems, the risk ofparameter that best correlates with bactericidal ac-
delayed tissue equilibration at the site of infectiontivity and clinical efficacy.[32,52,55,63,72] Although
(which can be avoided with the use of an initialclinical response to β-lactams has also been shown
loading dose), susceptibility to an inoculum effect,to correlate with AUC24/MIC, t>MIC appears to be
the lack of a well-defined goal steady-state concen-a better predictor.[63,73] Data from in vitro and animal
tration/MIC ratio, and the potential need to monitormodels also suggest that t>MIC of ≥40–50% of the
serum concentrations (if lower total daily doses areadministration interval is required to achieve survi-
used) to ensure adequate concentrations are main-val rates of 90–100% for infections involving Gram-
tained in the presence of pharmacokinetic variabil-positive organisms.[32] For infections caused by
ity.[76,77]

Gram-negative organisms, animal studies suggest
that a t>MIC of ≥60–70% may be required.[63,73,74] There is a relatively large body of evidence ex-
Extrapolation of animal data suggests that, for neu- amining the use of continuous infusion β-lactams in

© Adis Data Information BV 2003. All rights reserved. Clin Pharmacokinet 2003; 42 (9)



806 Slavik & Jewesson

unique clinical situations and patient populations. mycin have led to the investigation of continuous
Data from neutropenic cancer patients has suggested infusion administration in an attempt to improve
a benefit in some studies, but the results are incon- efficacy, reduce toxicity or reduce the costs asso-
sistent.[78,79] Data from healthy volunteers suggest ciated with vancomycin therapy.
that equivalent total daily doses of cefepime or Using an in vitro pharmacodynamic model, Lar-
ceftazidime in healthy volunteers does result in a sson et al. showed that despite increasing vancomy-
longer t>MIC.[80,81] Data from several small open- cin concentrations of vancomycin of 5, 10, 20, and
label trials in critically ill patients suggest that in the 40 mg/L, time-kill curves were not significantly
presence of a concomitant aminoglycoside, continu- different from one another (p = 0.20), and increasing
ous infusion ceftazidime 3–4g/day results in a great- vancomycin concentrations did not increase the time
er t>MIC, similar microbiological eradication rates, to kill 99.9% of the population of Staphylococcus
clinical cure rates and adverse drug effects, and aureus or the rate of kill.[89] Duffull et al. used an in
lower treatment costs, than intermittent ceftazidime vitro continuous bacterial culture model to assess
2g intravenously every 8 hours.[82-85] Two studies four different vancomycin regimens against S. aure-
involving the use of cefuroxime or piperacillin-tazo- us.[90] Despite regimens that achieved concentra-
bactam in immunocompetent patients with selected tions of 8–48 mg/L and various Cmax, Cmin and
infections suggest that continuous infusion regimens AUC values, there was no difference in the degree
can be used with similar clinical outcomes, lower or rate of S. aureus killing. Interestingly, all of the
total daily antimicrobial doses and lower costs as regimens achieved t>MIC values of 100%. Cantoni
compared with intermittent administration.[86,87]

et al. used a rat endocarditis model infected with S.
Despite the promising results of these prelim- aureus to evaluate the difference in efficacy be-

inary studies, there are no adequately powered, tween vancomycin regimens of 30 mg/kg every 12
properly controlled randomised double-blind clin- hours and 30 mg/kg every 6 hours.[91] Vancomycin
ical trials to support the use of continuous infusion serum concentrations were undetectable 6 hoursβ-lactam treatment regimens for most infections.

after vancomycin administration. Reducing the ad-
Accordingly, this method of administration should

ministration interval to 6 hours resulted in a de-
probably be reserved as second-line therapy for use

creased number of bacteria recovered from aortic
in patients failing to respond to treatment with con-

valve vegetations. Taken together, the data from inventional intermittent regimens involving short
vitro and animal studies suggest that t>MIC may beelimination half-life antimicrobials. Comparative
the pharmacokinetic-pharmacodynamic parameterstudies in the OPAT setting have also yet to be
correlating best with activity.undertaken, although these investigations would

There are limited data suggesting a relationshipcertainly be justified for some drug and infection
between vancomycin serum concentrations and clin-scenarios.
ical outcomes. Schadd et al. performed a cohort
study of 20 paediatric patients with heterogeneous5.2 Glycopeptides
staphylococcal infections treated with vancomy-
cin.[92] Sixteen patients (80%) who were successful-Similar to β-lactams, vancomycin also exhibits
ly treated with vancomycin all achieved peak serumtime-dependent killing, with a PAE of about 2–3
bactericidal titres of > 1 : 8, which corresponded to ahours against many Gram-positive bacteria.[32,52,88]

serum vancomycin concentration >12 mg/L. In aData from in vitro studies and animal models, and
retrospective review of 273 consecutive patientslimited human data, suggest that t>MIC, and poss-
with Gram-positive infections, Zimmerman et al.ibly AUC24/MIC, are the pharmacokinetic-pharma-
studied the relationship between serum vancomycincodynamic parameters that correlate best with the
concentrations and the duration of fever and abnor-bactericidal activity of glycopeptides. As with β-
mal white cell count, serum creatinine, length oflactams, the pharmacodynamic properties of vanco-
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hospital stay and overall mortality.[93] In an evalu- has been assessed in two studies involving healthy
volunteers. James et al. demonstrated that continu-able subgroup of 31 patients, significantly more
ous infusion administration of vancomycin resultedpatients had resolution of fever and elevated white
in serum bactericidal titres >1 : 8 for 100% of thecell count within 72 hours if trough serum vancomy-
administration interval, compared with 60% of thecin concentrations remained above 10 mg/L (p <
administration interval for intermittent administra-0.01). An unpublished preliminary report of a multi-
tion (statistical significance not reported).[106] In acentre study in patients with Gram-positive infec-
study involving one isolate of E. faecalis, Klepser ettions suggested that serum vancomycin Cmin >10
al. found that continuous infusion of vancomycinmg/L was associated with an increased rate of bacte-
2000 mg/day provided bactericidal activity for arial eradication.[94] Finally, in another study pub-
greater portion of the administration interval thanlished in abstract form only, Rybak et al. prospec-
that achieved with 1000mg every 12 hours whentively randomised 104 patients with heterogeneous
either were combined with gentamicin (97% vsGram-positive infections to target vancomycin se-
75%, p < 0.001).[107] Unfortunately, all patients re-rum Cmin of 5–10, 10–15 or 15–25 mg/L.[95] There
ceiving continuous infusion vancomycin in thiswas no difference between any of the groups in
study suffered thrombophlebitis, ranging from in-number of febrile days or clinical outcome. Due to
jection site pain to redness along the length of thethe limited and conflicting data correlating vanco-
vein. None of the patients in the intermittent groupmycin serum concentrations to clinical effect, the
reported this adverse effect. The clinical impact of autility of obtaining routine serum vancomycin con-
slightly longer bactericidal activity with continuouscentrations has been debated in the litera-
infusion vancomycin is debatable, and studies ex-ture.[23,96-105]

amining the continuous infusion of vancomycin in
There are also no published human studies to patients infected with Gram-positive bacteria have

identify which pharmacokinetic-pharmacodynamic failed to show a clinically important difference to
parameter may be the most predictive of vancomy- intermittent administration regimens on microbio-
cin activity, or what magnitude of that parameter logical eradication and clinical cures. Although
must be achieved to improve clinical outcomes. more data are required on continuous infusion ad-
Schentag et al. performed a retrospective analysis on ministration of vancomycin, its long t1/2β (compared
84 patients with microbiologically confirmed Gram- with β-lactam agents) and Gram-positive PAE ap-
positive infections in patients receiving vancomy- pear to make continuous infusion unnecessary for
cin, and found that patients infected with organisms most patients.
with an MIC of > 1 mg/L or those with an AUC24/
MIC ratio of <125 had a higher probability of clin-

5.3 Fluoroquinolonesical failure.[52] The correlation between t>MIC and
clinical outcomes was not reported. More data cor- Fluoroquinolones classically exhibit concentra-
relating pharmacokinetic-pharmacodynamic para- tion-dependent killing, and data from in vitro and
meters with clinical efficacy is required. animal models suggest that Cmax/MIC or AUC24/

Due to their pharmacodynamic similarity to β- MIC correlates best with their bactericidal activity,
lactams, continuous infusions of vancomycin have clinical efficacy and the development of resistance.
been investigated in both healthy volunteers and in In vitro data suggest that Cmax/MIC ratios of ≥3 are
patients with Gram-positive infections[106-111] The bactericidal,[112] although ratios of 8 appear to be
influence of a continuous infusion vancomycin regi- required to prevent regrowth and the emergence of
men on serum bactericidal activity against isolates resistant isolates.[112,113] Animal data have suggested
of methicillin-sensitive S. aureus (MSSA), methicil- that despite similar AUC24/MIC values, survival is
lin-resistant S. aureus (MRSA), methicillin-resistant increased with increased Cmax/MIC ratios of
S. epidermidis (MSSE) and Enterococcus faecalis 20.[112,114] Although this suggested that Cmax/MIC is
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more closely correlated with fluoroquinolone ac- predictor of activity. An AUC24/MIC ratio of ≥125
was required to achieve microbiological eradicationtivity, if Cmax/MIC was <10, AUC24/MIC was just
and clinical cure rates of >80%.[118] Interestingly,as good a predictor of outcome.[32,115] Because of
only about 50% of patients in this study achievedcovariance with fixed administration intervals or
Cmax/MIC ratios of ≥10, which may explain whydoses, different views exist as to which pharmaco-
AUC24/MIC was a better predictor of activity. For-kinetic-pharmacodynamic parameter best correlates
rest et al. also studied 76 patients receivingwith fluoroquinolone activity. It may be that if Cmax/
grepafloxacin for acute exacerbations of chronicMIC is >10, then it is the most predictive parameter,
bronchitis infected with mostly Gram-negative or-whereas if Cmax/MIC is <10, AUC24/MIC may cor-
ganisms, and some S. pneumoniae.[119] Patientsrelate better with outcome.[61,63] In general, animal
achieving higher AUC24/MIC ratios had faster bac-data suggest that AUC24/MIC ratios <30 are asso-
terial eradication (2.5 days with <75 vs 0.5 daysciated with >50% mortality, whereas AUC24/MIC
with 75–190), higher microbiological cures (57%ratios ≥100 confer almost 100% survival.[32,116] In-
with <70 vs 90% with ≥70) and higher clinical curesterestingly, fluoroquinolones may be active against
(71% with <75, 80% with 75–175 and 90% withGram-positive organisms at lower AUC24/MIC ra-
>175). The relationship between Cmax/MIC and out-tios than are required for Gram-negative organ-
come was not studied in this trial. Preston et al.isms.[60] Thus, the activity of fluoroquinolones may
studied 116 patients receiving levofloxacin forbe pathogen-dependent, and AUC24/MIC ratios as
respiratory tract, skin or urinary tract infections, andlow as 30–50 may have at least bacteriostatic ac-
found that Cmax/MIC was the best predictor of out-tivity against S. pneumoniae and Bacteroides sp.[60]

come.[120] Patients who achieved Cmax/MIC ratios ofThis has led some to suggest that AUC24/MIC ratios
≥12.2 had higher microbiological (100% vs 80.8%)should be ≥25 for less severe infections or in immu-
and clinical (99.0% vs 83.3%) cures than those withnocompetent hosts, whereas AUC24/MIC ratios of
ratios <12.2. The AUC24/MIC ratio was also predic-≥100 should be achieved in more severe infections
tive of activity, and patients with AUC24/MIC ratiosor in immunocompromised hosts.[55] Others have
of >100, 25–100 and <25 had clinical failure rates ofsuggested that acceptance of lower AUC24/MIC ra-
1%, 12% and 43%, respectively.[55] Interestingly, atios of 30–50 may lead to incomplete bacterial eradi-
small subgroup of patients with S. pneumoniae hadcation, selection of isolates with higher MICs, and
microbiological cure rates of 87.5% with an AUC24/potentially promote antimicrobial resistance that
MIC of 0–92.[60] Other recent work has evaluatedcould lead to clinical failures and cross-resistance
the optimal AUC24/MIC ratio for fluoroquinolones

with other fluoroquinolones.[62]
against S. pneumoniae. Zhanel et al. used an in vitro

The majority of studies evaluating the pharmaco- pharmacodynamic model to simulate achievable
dynamics of fluoroquinolones in humans have been peak serum concentrations and AUC of ciprofloxa-
in patients with nosocomial Gram-negative infec- cin, grepafloxacin, trovafloxacin, levofloxacin, ga-
tions. In a prospective, observational study, Pelo- tifloxacin and moxifloxacin against multidrug-resis-
quin et al. evaluated 50 patients receiving ciproflox- tant strains of S. pneumoniae. Except for ciprofloxa-
acin for ventilator-associated pneumonia at a fixed cin, all of the agents reduced the inoculum below the
interval, and found that bacterial eradication was level of detection by 48 hours with no resistant
correlated with Cmax/MIC and t>MIC, but not mutants. The estimated free AUC24/MIC ratios for
AUC>MIC. A post-hoc analysis suggested that a these agents ranged from 35–63.[121] Ambrose et
Cmax/MIC ratio of ≥8 was needed to achieve cure al.[122] evaluated 58 ambulatory patients with pneu-
rates of ≥80%.[117] Forrest et al. performed a retro- monia or bronchitis from phase III trials using
spective study in 74 patients receiving ciprofloxacin levofloxacin and gatifloxacin. All patients who
for moderate to severe respiratory tract infections, achieved an estimated free AUC24/MIC of at least
and found AUC24/MIC to be the most important 33.7 had a microbiological response, whereas those
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with a free AUC24/MIC of less than 33.7 had a 64% that aminoglycosides may have a 2–10-hour con-
response rate (p = 0.013). These data have prompted centration-dependent PAE.[52,127]

some clinicians to advocate lower AUC24/MIC val- Maximum aminoglycoside concentrations have
ues for fluoroquinolones for respiratory tract infec- been closely linked to outcomes in human studies.
tions caused by S. pneumoniae.[121-123] However, Noone et al. studied 65 patients with Gram-negative
others argue that higher AUC24/MIC ratios should sepsis and reported higher cure rates (84% vs 23%)
still be attempted, especially in critically-ill patients for patients with ‘adequate’ gentamicin Cmax values
admitted to hospital, and that clinically important (≥5 mg/L for sepsis, urinary tract or wound infec-
differences exist in achievable AUC24/MIC ratios tions, and ≥8 mg/L for pneumonia).[128] Moore et al.
between various fluoroquinolones. Thus, they sug- analysed data from four clinical trials in 84 patients
gest the use of lower potency agents may lead to

with sepsis, and reported higher survival rates
clinical failures and ultimately increase fluoroquino-

(97.6% vs 79.1%) in patients with ‘therapeutic’
lone resistance.[62]

gentamicin, tobramycin (>5 mg/L) or amikacin (>20
The pharmacodynamics of fluoroquinolones are mg/L) serum concentrations.[129] In a similar study

predictive for clinically important resistance. in 36 patients with Gram-negative pneumonia,
Thomas et al. studied the relationship between

Moore et al. reported higher cure rates (70% vs
AUC24/MIC ratios and the development of resis-

32%) in patients with ‘adequate’ gentamicin (>7
tance in 143 patients from four nosocomial pneumo-

mg/L) or amikacin (>28 mg/L) serum concentra-
nia trials involving five antimicrobial regimens (in-

tions.[130]
cluding ciprofloxacin).[124] Patients who achieved an

Unlike in animal models, Cmax/MIC is the phar-AUC24/MIC ratio of ≥100 had a 9% probability of
macokinetic-pharmacodynamic parameter mostdeveloping resistance, whereas patients with an
closely linked to outcomes in human studies, despiteAUC24/MIC of <100 had an 82.4% probability of
issues with covariance in studies with fixed adminis-developing resistance.
tration regimens.[131] In an analysis of four clinical
trials of patients with sepsis, Moore et al. found that

5.4 Aminoglycosides maximal and mean Cmax/MIC were significantly
higher in responders than in nonresponders (8.5 vs
5.0 mg/L and 5.5 vs 4.6 mg/L, respectively).[132]Like fluoroquinolones, aminoglycosides exhibit
Clinical cure rates approached 90% with Cmax/MICrapid, concentration-dependent killing, although
ratios of ≥8–10. In patients with nosocomial Gram-when used as adjunctive therapy for S. aureus or
negative pneumonia, these same authors demonstra-enterococci their activity may be concentration-in-
ted that achieving a Cmax/MIC ratio of ≥10 withindependent.[60,61] Aminoglycosides also have a con-
the first 48 hours on aminoglycoside therapy wascentration-dependent PAE against Gram-negative
associated with a 90% probability of therapeuticorganisms.[60,61] Aminoglycosides are subject to
response by day 7.[133] Resolution of temperatureadaptive resistance – a short-term decrease or down-
and leucocyte count on day 7 was also more likely ifregulation in drug uptake and subsequent reduction
a Cmax/MIC ratio of >4.7 was achieved within 48in bactericidal activity after prolonged exposure to
hours of therapy.[134] Thus, based on the pharmaco-low drug concentrations.[32,61] In vitro data has
dynamic properties of aminoglycosides determinedshown that Cmax/MIC ratios of ≥8 are required to
from in vitro, animal and human studies, the theoret-prevent regrowth and the emergence of resistant
ical goal of aminoglycoside administration regimensisolates.[112] Both Cmax/MIC and AUC24/MIC may
may be give higher doses less frequently to takepredict the efficacy of aminoglycosides; however,
advantage of their concentration-dependent killinganimal models have shown AUC24/MIC to be more
and PAE, and to prevent adaptive resistance. Thispredictive of efficacy.[32,116,125,126] Data from animal
concept has led to the development of the high-dosemodels with Gram-negative organisms indicates
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extended-interval administration regimens that have activity.[55,126,145] In a neutropenic murine thigh in-
been used clinically. fection model, stepwise regression analysis showed

that the best predictor of the activity of erythro-To our knowledge, there have been no published
mycin against S. pneumoniae was t>MIC (r2 = 0.73,studies comparing extended-interval administration
p < 0.05).[126] A similar study evaluating clarithro-versus conventional regimens using individualised
mycin in a neutropenic murine thigh infection modeladministration. Moreover, there have been no pub-
with S. pneumoniae found a highly significant corre-lished studies of individualised extended-interval
lation between bacterial counts and t>MIC (p <administration regimens attempting to incorporate
0.05)[145] Standard doses of erythromycin and clari-individual pharmacokinetic and antimicrobial sus-
thromycin produce serum concentrations that gener-ceptibility data to design or optimise administration
ally exceed the MIC for susceptible strains of S.regimens. Numerous clinical trials have evaluated
pneumoniae for 88–100% of the administration in-the efficacy and toxicity of conventional versus ex-
terval,[75] with associated bacteriological cures intended-interval administration regimens, but the re-
93–100% of children with otitis media.[32]sults have been inconclusive because of lack of

methodological rigour or design flaws. These clin- The difficulty of selecting pharmacokinetic-phar-
ical trials have been pooled using meta-analytic macodynamic parameters to explain the intracellular
techniques by several authors.[135-143] Although activities of the newer macrolides is highlighted in a
some meta-analyses have shown either statistically study by Nightingale et al.[146] Although both clari-
significant increases in microbiological efficacy,[136] thromycin and azithromycin exceeded the MIC val-
clinical efficacy[136,138,142] and overall response,[143] ues for S. pneumoniae throughout the administration
or statistically significant reductions in nephrotoxic- interval, neither reached their respective MIC levels
ity,[137,141] there appears to be no clinically important of 4–8 mg/L and 0.5–2 mg/L for H. influenzae,
differences between aminoglycosides administered despite being clinically effective agents for this
using conventional or extended-interval regimens. organism.

Unlike the newer macrolides, the activity of the
5.5 Other Antimicrobials azalide azithromycin is best correlated with AUC24/

MIC in the neutropenic murine thigh infectionThere are limited data available to characterise
model.[60,147] The explanation for this has been thethe pharmacodynamics of macrolides/azalides,
prolonged in vivo PAE of azithromycin that corre-lincosamides, metronidazole, streptogramins and
lates with its AUC.[32,55,61] There are no human stud-oxazolidinones.
ies that correlate pharmacokinetic-pharmacodynam-

5.5.1 Macrolides ic parameters with clinical outcomes for macrolides
In general, the macrolides and azalides are or azalides.

bacteriostatic agents with time-dependent kill char-
acteristics and a variable PAE.[32,60] It is difficult for 5.5.2 Clindamycin
an integrated pharmacokinetic-pharmacodynamic Clindamycin is a lincosamide antimicrobial with
parameter to strongly predict their activity, because bacteriostatic activity against most organisms.
of their intracellular activity that is not accounted for There are limited data available to characterise its
by reported MICs.[60,144] Moreover, due to variable pharmacodynamic properties.[32,58,60] An in vitro
pharmacokinetic differences between macrolides, pharmacodynamic model against S. aureus and S.
there are differences between the agents with respect pneumoniae tested administration regimens that
to which pharmacokinetic-pharmacodynamic para- maintained t>MIC for the entire administration in-
meters predict their activity in animal models. terval, but varied Cmax/MIC and AUC24/MIC.[148]

Animal models have shown that for erythro- Regimens that resulted in lower Cmax/MIC and
mycin and clarithromycin, t>MIC is the pharmaco- AUC24/MIC ratios did not correlate with a loss of
kinetic-pharmacodynamic parameter predictive of antimicrobial efficacy.[60,148] There are no human
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studies that correlate pharmacokinetic-pharmacody- comycin-resistant E. faecium (VREF) 0.2–3.2
namic parameters with clinical outcomes for clinda- hours.[151,152] The presence of such a long PAE al-
mycin. lows extended administration intervals of 8 hours

despite half-lives of 0.6–1.0 hour for quinupristin
5.5.3 Metronidazole

and 0.3–0.4 hours for dalfopristin.[151,152]
Metronidazole is an anti-anaerobic antimicrobial

There are relatively few data to define the phar-with concentration-dependent bactericidal activity.
macokinetic-pharmacodynamic parameter thatAn in vitro study was performed under anaerobic
predicts activity for quinupristin-dalfopristin. An inconditions to characterise the activity of metronida-
vitro study using a fibrin-clot model studied isolateszole against Trichomonas vaginalis.[149] Metronida-
of S. aureus sensitive and resistant to methicillin andzole exhibited concentration-dependent killing
erythromycin.[153] AUC was significantly correlatedagainst T. vaginalis at concentrations from 0.1 to
with the reduction in bacterial density over 72 hours,>10 times the minimum lethal concentration, and
but only for the methicillin-erythromycin resistantmaximal kill rates were at 10–25 times the minimum
isolates (r2 = 0.55, p = 0.04). In vivo data using thelethal concentrations. The authors suggest that
neutropenic thigh model against S. aureus and S.Cmax/MIC or AUC24/MIC are the important phar-
pneumoniae showed AUC24/MIC to be the bestmacokinetic-pharmacodynamic parameters that
predictor of response.[154] An in vivo endocarditisshould be optimised. The concentration-dependent
model with S. aureus showed both AUC24/MIC (r2

effect of metronidazole was the impetus behind the
= 0.14, p = 0.02) and AUC24/MBC (r2 = 0.30, p =investigation of a high single-dose regimen for the
0.0001) to be correlated with outcome.[155] Anothertreatment of T. vaginalis, and data from randomised
in vitro study using the concentration-time-killtrials show higher cure rates with doses of at least
curve method evaluated quinupristin-dalfopristin1.5g as a single oral dose.[150] Unfortunately, there
against VREF under static conditions, and found aare no human studies that correlate pharmacokine-
strong correlation between the quinupristin-tic-pharmacodynamic parameters with clinical out-
dalfopristin concentration/MBC ratio and bacterialcomes for metronidazole.
kill rate (r2 = 0.34, p = 0.02).[156] Thus, although

5.5.4 Quinupristin-Dalfopristin relationships between AUC and the MIC or MBC
Quinupristin-dalfopristin, the first marketed stre- appear promising, there are no human studies that

ptogramin, is a 30/70 mixture of these two semisyn- correlate pharmacokinetic-pharmacodynamic para-
thetic pristinamycin derivatives.[151] Quinupristin- meters with clinical outcomes for quinupristin-
dalfopristin has bactericidal activity against dalfopristin.
staphylococci and streptococci, and bacteriostatic

5.5.5 Linezolidactivity against E. faecium. In vitro studies suggest
that quinupristin-dalfopristin has concentration-de- Linezolid is the first marketed oxazolidinone,
pendent activity, and is rapidly bactericidal against with bacteriostatic activity against most susceptible
staphylococci at 2–4 times MIC, but has little or no Gram-positive organisms and bactericidal activity
activity at the MIC. Quinupristin-dalfopristin pos- against some streptococci (S. pneumoniae and S.
sesses a prolonged PAE against Gram-positive pyogenes). Linezolid has activity against MSSA,
bacteria at concentrations above the MIC, and drug MRSA, MSSE, methicillin-resistant S. epidermidis,
concentration is a more important parameter for penicillin- and cephalosporin-resistant S. pneu-
determining the duration of the PAE than exposure moniae, vancomycin-resistant E. faecalis and van-
time.[151] In vitro PAEs vary based on the bacterial comycin-resistant E. faecium.[157-159] In vitro and
species studied: S. aureus 2–8 hours, coagulase- animal models suggest that linezolid has time-de-
negative staphylococci 2.5–7.5 hours, S. pneu- pendent killing, with increasing doses producing
moniae 7.5–9.5 hours, S. pyogenes 18 hours, vanco- minimal concentration-dependent killing.[160] In vi-
mycin-sensitive E. faecium 8.4–8.6 hours and van- tro time-kill experiments have demonstrated a PAE
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that is more prolonged at four times the MIC lished human studies that correlate pharmacokine-
tic-pharmacodynamic parameters with clinical out-(0.1–1.4 hours) compared with at the MIC (<0.1–0.8
comes for linezolid.hours) against all organisms tested.[161] In contrast,

in vivo data from a murine thigh infection model
6. General Considerations for OPATshowed that linezolid doses of 20 mg/kg and 80 mg/

kg produced similar PAEs of 3.6 and 3.8 hours with OPAT should be initiated according to an appro-
penicillin-sensitive S. pneumoniae and 3.9 and 3.7 priate decision-making plan (figure 4). The choice
hours with MSSA.[160] In vivo data has shown that of drug(s) and drug regimen for OPAT should be
t>MIC is the major pharmacokinetic-pharmacody- based upon a thorough consideration of patient,
namic parameter determining the efficacy of linezo- infection, pathogen, drug, economic resources and
lid (r2 = 84%) versus AUC24/MIC (r2 = 42%) and psychosocial and environmental conditions under
Cmax/MIC (r2 = 39%) [statistical significance not which the treatment course will be implemented.
reported]. Andes et al. also reported that, based on a Several antimicrobials are available in both intrave-
t>MIC goal of 40%, linezolid at a dosage of 500mg nous and oral dosage forms. Many of these agents
orally or intravenously twice daily should achieve have good, or at least clinically acceptable, oral
success against organisms with MIC values as high bioavailability and thus can be considered alterna-
as 4 mg/L.[160] Thus, although t>MIC appears to tives to the parenteral formulations at the com-
predict efficacy in animal models, there are no pub- mencement of therapy, or as a component of an

Patient with infection
warranting antimicrobial therapy

Does the patient meet
criteria for OPAT?

• Medical care does not require hospitalization
• Home environment is is safe and supportive
• Patient/caregiver capable of safe and effective drug
   administration, and are willing and able to participate
• Resources available at proposed site of care
• Therapeutic monitoring by programme personnel feasible

Can an oral antimicrobial agent be
used as a safe and effective

alternative to parenteral therapy?

Yes

Yes

Is there more than one acceptable
drug and/or dosage regimen
that can be employed based

upon published clinical efficacy
and toxicity data?

Yes

No

Is there a significant cost
difference between these

acceptable treatment regimens?

Yes

Initiate OPAT therapy
with the acceptable
treatment regimen

Employ oral antimicrobials

No

Use the most
convenient regimen to
enhance compliance

Monitor to ensure desired
clinical response is

achieved

Consider intravenous-to-oral
stepdown when clinically indicated

Use the most
inexpensive regimen

No

Is there a significant
convenience impediment
associated with the use of
the less costly regimens?

Yes

Yes

No

Fig. 4. Decision-making algorithm for outpatient parenteral antimicrobial therapy (OPAT). Criteria for OPAT are from Williams et al.[9]
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