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1 Problem formulation

• Main problem and Lagrange dual of standard linear semidefinite optimization problem (SDP)

maximize
X

tr(CX)

subject to A(X) = b
X � 0

minimize
y,Z

bT y

subject to Z = AT (y)− C
Z � 0

(1)

Here, X is n× n symmetric. The notation X � 0 means X is positive semidefinite, i.e. uTXu ≥ 0 for
all u. The linear operators

A(X)k = tr(AkX), k = 1, . . . ,m. A∗(y) =

m∑
i=1

ykAk

You can verify that A and A∗ are adjoint operators, e.g.

〈A(X), y〉 = 〈X,A∗(y)〉

and here 〈X,Y 〉 = vec(X)Tvec(Y ) = tr(XTY ) is a (standard) way of defining an inner product over
matrices.

• For Lagrange duals, X∗ and Z∗ admit a simultaenous eigendecomposition. That is, if the eigendecom-
position of X∗ is

X∗ = Udiag(λX)UT

then
Z∗ = Udiag(λZ)UT

and by complementary conditions, (λX)i(λZ)i = 0 for i = 1, . . . , n. Since for strong duality we have
strict complementarity, then at least one is always nonzero.

• Background Without thinking too hard, there are two main ways of solving either problem in (1):

– Interior point method. Then at each iteration we compose a KKT system, which solves a system
of equations at each point equal to # variables (n2) + constraints (m). Recall that a direct solve
of a system Ax = b is cubic in the number of rows /cols of A, so the per iteration complexity is
(n2 +m)3, which, well, if n is like a million, is prohibitive. 1

1In reality, anyone proposing to use an interior point method to solve an SDP thought long and hard about sparsity and
structure, so there exist pretty good solvers out there. But, they’re still not like super scalable.
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– A first order method like projected gradient, or ADMM, or Douglas-Rachford (very similar to
ADMM). Here, you’re bottlenecked either by projecting on the linear constraint, or by projecting
on the postive semidefinite cone {X : X � 0}. Taking the eigendecomposition X = UΛUT ,

proj{X:X�0} =

n∑
i=1

max{λi, 0}uiuTi

where
U = [u1, . . . , un], Λ = diag(λ1, . . . , λn).

For SDPs, unless m is super huge, usually this is the thing that prohibits you. Based on my past
experience, if you don’t like the smell of burning metal, n <≈ 10000 for dense problems.

– Now, if you assume low rank, you have much better tools available to you. Specifically, maybe you
only care about the top r eigenvalue / eigenvector pairs, rather than a full eigendecomposition.
So, maybe we do something like the power method: for a matrix X, pick a random vector z0, and
do

yk := Xzk, zk+1 =
1

‖yk‖2
yk

until it converges zk → z. Then zTXz is the top eigenvalue of X and z is its associated eigen-
vector. This happens pretty fast, and if X is sparse, is easy to do. Moral of the story: eig (full
decomposition) = bad, eigs (very few eigenvalues) = good.

• Reformulations of (1) Replace Z � 0 with λmax(−Z) ≤ 0. By strict complementarity, since Z �
0 ⇐⇒ X = 0. So, by ensuring X∗ 6= 0 we can assume λmax(−Z) = 0.

(1) is therefore equivalent to

minimize
y,Z

bT y

subject to λmax(C −AT (y)) = 0
(2)

Now suppose that A(X) includes a trace constraint. Say, tr(A0X) = tr(X) = b0. Then A∗(y) =
y0I +

∑m
k=1 ykAk and the Lagrangian of (2) is

aλmax(C −
m∑
k=1

ykAk − y0I) + b0y0 +

m∑
k=1

bkyk = aλmax(C −
m∑
k=1

ykAk) +

m∑
k=1

bkyk + (b0y0 − ay0)

which, when minimized over y, will be −∞ unless a = b0. Therefore, taking a = b0, (1) is equivalent
to

min
y

aλmax(C −A∗(y)) + bT y. (3)

So the remainder of the paper is about solving (3).

2 Subdifferentials and ε-subdifferentials

• Definition: A subgradient of f at x is defined as the set of w where

f(y)− f(y) ≥ wT (y − x), ∀y ∈ domf. (4)

We denote the set of subgradients of f at x as ∂f(x).

– When w = ∇f(x) then property (4) is the equivalent first order condition of convexity of f . So,
nothing surprising.

– As long as f is convex, this set always exists and is nonempty.
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– If f(x) is smooth, then ∂f(x) = {∇f(x)} (a singleton).

– If f(x) is nonsmooth, then ∂f(x) is a convex set. A popular example is f(x) = |x| (absolute
value). Then

∂f(x) =


1 x > 0

−1 x < 0

[−1, 1] x = 0

• Claim: The subdifferential of λmax(X) is

∂λmax(X) = G := {W : 〈W,X〉 ≥ λmax(X), tr(W ) = 1, W � 0}

Proof: If X’s top eigenvalue is isolated, then it is clear from the definition of a maximum eigenvalue
that ∂λmax(X) = {uuT } where u = evecmax(X) (eigenvector associated with top eigenvalue).

If X’s top eigenvalue has multiplicity r > 1, then

∂λmax(X) = conv(uiu
T
i ), i = 1, . . . , r = G.

2

• Definition: An ε subgradient is defined as a w such that

f(y)− f(x) ≥ wT (y − x)− ε, ∀y ∈ domf

Note that this guy is with a prespecified ε > 0.

• Claim: The ε subdifferential of λmax(X) is

∂λmax(X) = Gε := {W : 〈W,X〉 ≥ λmax(X)− ε, tr(W ) = 1, W � 0}

I personally don’t believe that there is an easy way of deriving this subdifferential, but some of the
efforts is included in the end. (Not a full proof, though.)

However, the authors are nice enough to point to [Ye, 1993] for verification.

• Note also that the ε subgradient of a linear function must be just the subgradient, since you can always
choose y and ỹ such that y − x = −(ỹ − x). Therefore

bT y − bTx ≥ gT (y − x)− ε ⇐⇒ g = b

• Now taking f(y) := aλmax(C −A∗(y)) + bT y,

∂εf(y) = {W : tr(W (C −A∗(y))) ≥ λ(C −A∗(y))− ε/a, tr(W ) = 1, W � 0}.

• Big idea, quoted from paper: “We will see that the ε-subdifferential of eigenvalue problems has the
form of the feasible set of a semidefinite program. This suggests to use, instead of the traditional
polyhedral cutting plane method, a semidefinite cutting plane model that is formed by restricting the
feasible set of ε-subgradients to an appropriate face3 of the semidefinite cone. This specialization of
the cutting plane model is the main contribution of the paper.”

3 Next time...

Traditional bundle method of Kiwiel [Kiwiel, 1990], with serious vs null step, aggregation, etc.
Would looking at the Pataki result be of interest as well, to motivate low rank solutions?

2For your viewing pleasure, I have included a way more involved proof at the end.
3A face of a PSD cone {X � 0} refers to a lower dimensional “corner”, e.g. {PV PT : V � 0} and P is tall and prespecified.
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4 A way more insane proof for deriving subdifferentials

• Lemma 1:
λmax(Y ) ≥ tr(WY ), ∀Y ∈ Sn ⇐⇒ tr(W ) = 1, W � 0

Proof: (⇒) Pick an adversarial Y . Define Y = cI. Then

tr(WY ) = ctr(W ) = λmax(Y )tr(W )

If c > 0 then this implies tr(W ) ≤ 1. If c < 0, then tr(W ) ≥ 1. Therefore it must be that tr(W ) = 1.

Now pick a different adversarial Y = Udiag(σ)UT where W = Udiag(λ)UT is the eigendecomposition
of W . Define

σi =

{
0 λi ≥ 0

−1 λi < 0.

Then
tr(WY ) = −

∑
i:λi<0

λi ≥ 0

Suppose W has a single negative eigenvalue. Then λmax(Y ) = −1 < 0 which is a contradiction. Then
the only way this is satisfied is if W has no negative eigenvalues, and thus defined in this way, Y = 0

(⇐) If W � 0 and tr(W ) = 1 then ‖W‖∗ = tr(W ) = 1. Using Cauchy Schwartz we have

tr(WY ) ≤ ‖W‖∗‖Y ‖2 = ‖Y ‖2 and tr(WY ) ≤ ‖ −W‖∗‖ − Y ‖2 = ‖ − Y ‖2

Since λmax ≥ min{‖Y ‖2, ‖ − Y ‖2}, then the claim is proven.

• Lemma 2: For some X � 0, λmax(X) > 0, ε > 0

λmax(Y )− λmax(X) ≥ tr(W (Y −X))− ε, ∀Y ⇒W is not negative definite.

Proof: If W ≺ 0 then tr(XW ) ≤ 0. Pick

Y = cI −X, c =
−(1 + ε)

|tr(W )|
< 0.

Then tr(W ) < 0 and

λmax(Y )− tr(WY ) = 0 + c|tr(W )|+ tr(WX) = −(1 + ε) + tr(WX)

and

λmax(Y )− tr(WY ) ≥ λmax(X)− tr(WX)− ε ⇐⇒ −1 ≥ λmax(X)− 2tr(WX) ≥ λmax(X)

which can’t be true as long as λmax(X) > 0.

• Lemma 3: For some X � 0, λmax(X) > 0, ε ≥ 0

If W is not negative definite,

λmax(Y )− λmax(X) ≥ tr(W (Y −X))− ε, ∀Y ⇒ ‖W‖∗ = 1

where ‖W‖∗ =
∑
i |λi| where λi are the eigenvalues of W .

Proof: Using the same eigendecomposition W = Udiag(λ)UT , pick again l Y = cUdiag(sign(λ))UT .
to get

c(1− ‖W‖∗) ≥ λmax(X)(1− ‖W‖∗)− ε
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by Cauchy Schwartz.

Consider 1 6= ‖W‖∗, and pick c as

c =
λmax(X)(1− ‖W‖∗)− ε− 1

1− ‖W‖∗

Then
c(1− ‖W‖∗) ≥ λmax(X)(1− ‖W‖∗)− ε ⇐⇒ −1 ≥ 0.

Therefore ‖W‖∗ = 1.

• Subdiff of λmax: If X � 0 and λmax(X) > 0 then the subdifferential of λmax is

∂λmax(X) = G := {W : 〈W,X〉 ≥ λmax(X), tr(W ) = 1, W � 0}

Proof: Lemma 1 gives G ⊆ ∂λmax(X).

Lemma 2,3 shows that if W ∈ ∂λmax(X), then ‖W‖∗ = 1.

Then
tr(WX) ≤ ‖W‖∗λmax(X) = λmax(X)

which implies
λmax(Y ) ≥ tr(WY ), ∀Y ⇐⇒ W ∈ G.

Invoking lemma 1 again gives the final result.

• ε subdiff of λmax: The ε-subdifferential for λmax(X) is

∂ελmax(X) = Gε := {W : 〈W,X〉 ≥ λmax(X)− ε, tr(W ) = 1, W � 0}

Proof: 4

Clearly if W ∈ Gε, then by lemma 1, W ∈ ∂ε(λmax(X)).

Again, we can use Lemma 2, 3 to assist in the other direction. But we can’t use Lemma 1 anymore...

5 Further reading
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