4 Random-coefﬁcient models

4.1 Introduction

lnthe previous chapter, we considered linear random-intercept models where the overal]
el of the response was allowed to vary over clusters after controlling for covariates.

In this chapter, we include random coefficients or random slopes in addition to
rundom intercepts, thus also allowing the effects of covariates to vary over clusters. Such
models involving both random intercepts and random slopes are often called random-
efficient models. In longitudinal settings, where the level-1 units are occasions and
“iwe clusters are typically subjects, random-coefficient models are algg referred to ag
arowth-curve models, Such models are discussed in chapter 5.

42 How effective are different schools?

We start by analyzing a dataset on inner-London schools that accompanies the MLwiN
software (Rasbash et a). 2005) and is part of the datg analyzed by Goldstein et al.
{1993).
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Figure 4.1: Scatterplot of gese versus 1rt for school 1 with regression line

We will now fit a simple linear regression model for each school, which is easily done
using Stata’s prefix command statsby, and examine the variability in the estimated

intercepts and slopes. We first calculate the number of students per school to preclude
fitting lines to schools with fewer than 5 students:

egen num = count(gcse), by {(school)

€1 use statsby to create a new dataset ols. dta in the local directory with the
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Figure 1.2; Scatterplot of intercepts and slopes for all schools with at least S students
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We assine that the covariate Xy 1S exogenous with E{Cyjlai;) = 0. E(Cojlai;) = 0,
awl Bl G Goy) = 0. Then Cij répresents the deviation of school J’s intercept
somy the mean intercept 3y, and G2y represents the deviation of school 7’s slope from
cye meant slope Fa. It follows from the zero expectations that all three random terms
e nueorrelated with .y, and that €;5 18 uncorrelated with both Cr; and (5. Both the
trercepts (1 and slopes (35 are independent across schools and the level-1 residuals €ij
e independent across schools and students.

An illustration of this random-coefficient nodel with one covariate x;; for a school
- i shown in the bottom panel of figure 4.4. A random-intercept model is shown for
coamparison inthe top panel. In each panel. the lower. bold. solid line represents the
sopnlation-averaged regression line

E(yijlei;) = 3 + oy

seross all schools. The thinner solid line represents the school

-specific regression line
worschool j. For the randon-intercept model. this is

Eyilvi;. Cj) = (3 + Cj) + Aoy

udents

which is parallel to the population-averaged line with vertical displacement given by the

random intercept Crj- In contrast, in the random-coefficient model, the school-specific
.
line

fficient

E(ys

i7> 61 Cog) = (B1 + Cuy) + (B2 + o))y
is not parallel to the population-averaged line but has a greater slope because the
random slope C2; Is positive in the illustration. Here the dashed line is parallel to the
Z’Q‘i}u‘}a‘ti()11-averaged regression line and has the same intercept as school j. The vertical
c‘iﬁ;ﬁgﬁm between this dashed line and the line for school J 18 Co524. as shown in the
dagram for. =1. The bottom panel illustrates that the total intercept for school jis
the total slope is 3y + (2. The arrows from the school-specific regression
Sponses y;; are the within-school residual error terms ¢;; (with variance g).

ijij represents an interaction between the clusters, treated as random,
te x;;.
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When vy =2y, =0, the expression for the intraclass correlation is the same as for the
sdoni-intercept model and represents the correlation of the residuals (from the overal]
wmean regression line) for two students iy the same schoo who both have 17t scores equal
to b {the mean). However, for other pairs of students in the same school. the intraclass
correlation is a complicated function of 45 and X5 Due to the heteroskedastic total
residual variance, it is not straightforward to define coefficients of determination. such
as B2 R:ﬁ and Hf discussed in section 3.5, for random-coefficient models.
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131 Using xtmixed

arhirary. it generally does not make seuse to set 21 to 0 by specifving uncorrelated
mereepts and slopes.

A useful way of interpreting the magnitude of the estimated variances ey and oy s

b considering the intervals ,[3’} +1.96 \/ﬁ and @2 +1.96 that contain about 95%
A the intercepts and slopes in the population, respectively. To aid interpretation of the
aandom part of the model, it is also useful to produce plots of school-specific regression
tnes as discussed in section 4.8.3.

4.5 Estimation using Stata

We will describe two Stata commands for linear random-coefficient models, xtmixed
aud gllamm. In general, we recommend using xtmixed rather than gllamm for |
random-coefficient models because it is computationally more efficient and sonietimes
more accurate. However, there are certain diagnostics available using the gliapred
command for gllamm that are, at the time of writing this book, not provided by the
predict command for xtmixed.

inear

45.1 Using xtmixed

Random-intercept model

We first consider the more familiar random-intercept model

Yis = (B1+ Q) + Bazyj + ¢ (4.4)

discussed in the previous chapter. This model is a special case of the random-coefficient
model in (4.1) with G2; =0 or, equivalently, with zero random-slope variance and ZEero
tatidom Intercept and slope covariance, ), = a1 =0.

Maximym likelihood estimates for

the random-intercept model can be obtained using
*taixed with the mle option:

(Continued on next page)
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