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Random-effects Parameters

Estimate Std. Err. [95% Conf. Interval]

schoel: Unstructured

sd(1rt) .1199144 .0189129 .0880277 .1633514
sd(_cons) 2.797928 . 2886796 2.285666 3.424997
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LR test vs. linear regression: chi2(3) =

381.45 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
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