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3.6.2 Predicted means and confidence intervals
Note that likelihood-ratio tests for regression coefficients cannot be based on “log likeli-
hoods™ from restricted maximum likelihood (REML) estimation. When using xtmixed.
the mle option must therefore be specified.

Sometimes it is required to test hypotheses regarding linear combinations of coeffi-
cients as demonstrated in section 1.8. In section 3.7.4. we will encounter a special case
of thix when testing the null hypothesis that two regression coefficients are equal, or
i other words that the difference between the coefficients is 0, a simple example of a
conrrast. Wald tests of such hypotheses can be performed in Stata using the lincom

command.

3.6.2 Predicted means and confidence intervals

We can use the adjust command to obtain predicted means for mothers and pregnan-
cles with particular covariate values. This is useful for iterpreting the results from
regression modeling.

tor example, if we want to interpret the effects of smoking and education on birth-
weight, we can set all other covariates to sone meaningful values and produce a table
of predicted means by smoking and education. [t is useful to frst define a categorical

variable for level of education and give the categories value Jabels

- generate education = hsgrad+! + somecoll*2 + collgrad*3
- label define ed 0 "no HS grad" 1 "HS grad" 2 "some Coll" 3 "Coll grad"

- label values education ed

After retrieving the estimates of the full model, we then use the adjust command,
setting all dummy variables either to 0 or 1 and all continuous values to their mean
{the latter is accomplished by simply listing the variables). We do not specify values
fm‘ Smokiqg and the education dummy variables, but specify smoke and education in
the by () ‘option instead: '

(Continued on next page)
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The h statistic has a 2 null distribution with degrees of freedom given as the number
of overlapping estimated regression coefficients from the two approaches, that is the
nber of covariates with both between- and within-cluster variation.
We can use the hausman command to perform the Hausman test in Stata, following
LA . . R . .
estimation of 8 using xtreg with the fe option and 8 using xtreg with the re option:

. quietly xtreg birwt smoke male mage hsgrad somecoll collgrad married
> black kessner2 kessner3 novisit pretri2 pretri3, i(momid) fe

. estimates store fixed

. quietly xtreg birwt smoke male mage hsgrad somecoll collgrad married
> black kessner2 kessner3 novisit pretri2 pretri3, i(momid) re

. estimates store random

. hausman fixed random

—— Coefficients )
(b) (B) (b-B) sqrt(diag(V_b~V_B))
fixed random Difference S.E.
smoke -104.5494 ~217.7488 113.1995 22.71343
male 125.6355 120.9874 4.648084 5.297981
mage 23.15832 8.137158 15.02116 2.687211
kessner2 -91.49483 ~92.89604 1.401212 12.44845
kessner3 ~128.091 ~-150.6366 22.54563 24.87574
novisit -4.805898 ~29.9223 25.118641 41.66561
pretri2 81.29039 92.73087 —-11.44048 13.94097
pretri3 163.059 178.4334 -25.37443 30.76114

b = consistent under Ho and Ha; obtained from Xtreg
B = inconsistent under Ha, efficient under Ho; obtained from Xtreg

Test: Ho: difference in coefficients not systematic

chi2(8) = (b-B)’ [(V_b-V_B)~(-1)] (b-B)
= 60.07

Prob>chi2 0.0000

strong evidence for model misspecification since the Hausman test statistic is
ithdf = 8. The Hausman statistic is almost identical to the Wald statistic for

I hypothesis that all regression coefficients of the cluster means are 0 shown
us "Section. Indeed, these tests become equivalent in large samples.

 Hausman test ig often taken to mean that the random-intercept model
ned in favor of g fixed-effects model that only utilizes within informa-
“would preclude estimation of the coefficients of covariates that vary

: S. (admit,tedly, these estimates must be interpreted with caution
nsistent unless the covariates are exogenous). Moreover, if there

he same withip. and between-effects, we obtain more precise esti-
nts by exploiting both within- and between-cluster information.
g-a random-intercept model where cluster means are included
monstrated for smoking and mother’s age in the previous sec-
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t 3.9 Residual diagnostics
ates -

12

el : observed covariates Xij with respect to ¢;- An advantage of the ;
wlel. . : . " .

’ : is that it can be used to estimate the effects of betwee
to the fixed-effects model.

While the fixed-effects model is designed for making inferences re

in the sample, the random-effects model can also to some extent be used

by predicting the ¢; using empirical Bayes (1B). However,
ndom regression coefficients from random.

effects models, such ag estimated standard errors,
on of are for the population of clusters as discussed in section 2.7.2. The fixed-effects approach
1€5€ a8 requires large cluster sizes if we want to estimate the intercepts ay and is much lesg
vers 1o parsimonious than the random—int(-\,rcept model because it includes one
effects

parameter o,

for each cluster, whereas the barameter v for the

random-intercept model has only one ]
variance of the random intercepts G- Elimina,t;ing the «v; by mean cenfering as shown
i section 3.7.2 simplifies the estimation problem byt does not make the estimates of
oadhes the remaining parameters any more efficient. Unlike the random-effects approach, the
e fixed-effects approach controls for clusters, providing estimates of within-cluster effects
of covariates. The random-effects model

call provide estimates of wit}
ouly with extra effort, namely, by including cluster means of thoge

un-cluster effectg

covariates for which
_— the between effect differs from the withip effect.

— 39 Residual diagnostics

I We now consider residual diagnostics for assessing the normality assumptions for ¢; and
lormals EU' . .

In section 2.9.2, we discussed empirical B
tepts for different

residuals for the
o birth § of mother

ayes (EB) prediction of the random inter-
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-~ ~
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