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3.1 Introduction

In this chapter, we extend the variance-components models introduced in the previous
chapter by including observed explanatory variables or covariates z. Seen from another
perspective, we extend the linear regression models discussed in chapter 1 by introducing
random intercepts (;.

Although many of the features of the variance-components models persist, new is-
sues arise in estimating regression coefficients. In particular, we discuss the distinetion
between within-cluster and between-cluster covariate effects and the problem of omitted
cluster-level covariates and endogeneity. We also discuss coefficients of determination
or measures of variation explained by covariates.
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32 Does smoking during pregnancy affect birthweight?

Abrevaya (2006) investigates the effect of smoking on birth outcomes using the Natality
datasets derived from birth certificates by the U.S. National Center for Health Statistics.

Abrevaya identified multiple births from the same mothers in 9 datasets from 1990

ferences: matching mothers across the datasets. Unlike, for instance, the Nordic coun-
o has not beet que person identifier such as a person identification number, social security
name is rarely available in U.S. datasets. Perfect matching is thus precluded,

must proceed by identifying mothers who have identical values on a set

yod Il datasets. In this study, matching was accomplished by considering
i table ' birth and child’s state of birth, as well as mother’s county and city

@gg, race, education, marital status, and, if married, father’s age and
ching on mother’s and child’s states of birth to be useful, the data
mbinations of states that occur rarely.

he subset of the matches where the observed interval between
th the interval since the last birth recorded on the birth certifi-
ted to births with complete data for the variables considered
eton births (no twins or other multiple births) and births to i
0 births between 1990 and 1998 could be matched and : ‘:

white or black. We took a 10% random sample of this |
from 3,978 mothers. ‘
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first prenatal visit and the number of prenatal visits tal

king into account the gestational
ave of the fetus.

The data have a two-level structure with births (or children or pregnancies) at level 1
and mothers at level 2. In multilevel models, the response variable always varies at the
fIwest level. taking on.different values for different level-1 units within the same level-2
clhuster. However. explanatory variables can either vary at level 1 oy at level 2. For
instance. while smoke can change from one bregnancy to the next, black is constant
beiween pregnancies. smoke is therefore said to be a level-] variable whereas black ig
alevel-2 variable. Among the variableg listed above, black appears to be the only one
that cannot in principle change between bregnancies. However, becauge of the way the
watching was done. the education dummy variables (hsgrad, somecoll, and collgrad)
atnd marital status also remain constant across births for the same mother and

are thus
level-2 variables.

Westart by reading the smoking an birthweight data into Stata using the command
. use http://www.stata—press'.com/data/mlmusQ/smoking

Anseful Stata command for exploring how much variables vary at level 1 and

2 Is xtsum:
- Xtsum birwt smoke black, i(momid)
Variable Mean Std. Dev. Min Max Observations

birwt overall 3469.931 527.1394 284 5642 N = 8604
between 451.1943 1361 5183.5 n = 3978
within 276.7966 1528.431 5411.431 T-bar = 2. 1629

smoke overall .1399349 . 3469397 0 1 N = 8604
between . 3216459 0 1 n = 3978
Within

-1368006 -.5267318 .8066016 T-bar = 2.1629

black overall

-0717108 .2680235 0 o1 N = 8604
between .257512 0 1 n = 3978
within

0 0717108  .0717108 | T-bar = 2.1629
'Ehe topal number of ohge
i the utput), and the

the dataget.

rvations is NV = 8604, the number of clusters is J = 3978 (n
T€ are on average about 2.9 births per mother (T-bar in the

e‘fent sample standard deviations are given for each variable: the over-

}’I?.tlon Sz0, defined as usua] as the square root of the mean squared
ervatlons from the overall mean
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3.3.1  AModel specification

; 9!
1ates :

ti with covariates is the simplest exanipl
ation i el
@ are both fixed and random “effects”

which remains constant across births. whereas t]
error component, which varies between ¢l
independent over mothers, the €;; are indep
juared two error components are independent of cach other.

The random intercept or level-2 residual ¢ is a mot

The mother-specific error component. ¢; re
mother characteristics or unobserved heter
for mother j, &;, will tend to be positive, leading to heavier babies tl
the covariates. and if ¢; is negative. the total resid

b : o, 3 shared by all responses for the same mother,

ers J X .
ot among the total residuals &; ;.

1an predicted by
uals will tend to be negative. Since
it induces within-mother dependence

Letting x5 = (225, - .. »pij ) be the vector consisting of all observed covariates, the
] exogeneity assumptions are
es E(¢lxi) = 0 (3.3)
and
Eleijlxij. ¢;) = 0 (3.4)
eight is 3

from which it follows that £ (€ij]x:;) = 0. These asswmnptions ensure that the population-
averaged or marginal regression (ave

d . . L
status at eraged over ¢ and €. but given X;;) is linear

Elyislxi;) = E(B1 + Bawas; + - T*_Bmfm.i) + B(GIxi5) + Eeijxi;)
(3.) = Bt Bawaij + -+ Buay; 0 0 (3.5)

and that the cluster
and Xij) is linear

-specific or conditional regression (averaged over €5, but given G

to the Same
at the reSld'
wuced in ¢
ants:

Blyglxiy, ;) =

BB + Baaij + - + Byyi) + E(Glxiz, ¢) + Eleijixiy, ;)
B+ Bozayy + - + Bppij + ¢ 0 (3.6)

I

om the exogeneity assumptions stated in (3.3) and (3.4) that both ¢; and
Ofl‘elated with the covariates. For example, smoking is assumed to be un-
24 with the random intercept for mother, which represents the effect of omitted

,"(;.;iovariates on birthweight,. Endogeneity, or violation of exogeneity, is

Z;:ussed in terms of correlations between the error terms and covari-

aln ! 8

butional assumptions, we specify that

Gilxij ~ N (0, )

o of a linear mixed (effects) model where there

her-specific error component.
he level-1 residual €7 18 a child-specific
hildren 7 as well as mothers J. The ¢; are
endent over mothers and children. and the

presents the combined effects of omitted
bgeneity. If ¢; is positive. the total residuals
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341 Using xtreg

The command for fit
xtreg is
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a7

As shown in section 2.3 the correlation between the total

residuals for anv two
children 7 and ¢’ of the same mother 7. also ca

lled the residual correlation, ig

Cor(&;;. 1)) v (3.7)
=lor(&;. &) = —_ 3.7

o= Corleyy 6rj) = L

Thus p Is also the intraclass correlation of responses y;; and y,; for mother J. given the

covariates

P = Cor(yij, yirjx,;, Xitj) =

It is important to distinguish between the intracl
vontaining any covariates, sometimes called
and the conditional or residual intraclass ¢

ass correlation in a model not
the unconditional intraclass correlation.

orrelation in a model coutaining covariates.

3.4 Estimation using Stata

We can use Xtreg, xtmixed, or gllamm to fit the
addition, xtreg can be used to obtain generalized ] "ast-squares estimates, and xtmixed
can be used to obtain restricted maximum likelihood estimates. As
ter 2, xtreg is computationally the most efficient, where
the least efficient. Unless some special feature of gl1
gllapred are needed, we do not recormnmend using

models by maximum likelihood. In

discussed in chap-
as gllamm is coniputationally
amm or its prediction command
gllamm for linear models.

341 Using xtreg

The command for fittin

g the random-intercept, model (3.2) by
xn‘:g 3

maximum likelihood using

(Continued on next page)
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Numbey of obg
Number of 8roupg
1. Gaussian

Obs per group:

nin =
avg =
nax =
LR chi2(13)
Log likelihood = -65145.752 Prob > chi2
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Marrieq
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kessner2
kessners

70.84246
novisjt . 0.648 ~158.784¢ 98.72387
Pretrip 23.19258 4.00 0.000 47.40107 138.3145
Pretriz 178. 7295 51.64145 3.46 0.001 77.51416 279.9449
-cons 3117.191 40.97597 76.07 0.000 3197.503
/sigma§u 338.7874 6.296444 326.6487 351.3358
/sigma_e 370.6654 3.867707 363.1618 378.324
-4551289 01194714 -4318152 -4785967
leelihood—ratio test of Sigma_u=q. chib§r2(01)= 1108.77 Prob>=
(If the cluster idey

tifier iy fi).

chibarp = 0.000
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Table 3.10 Maxinmun likelihood estimates for smoking data (in grams)

Full model * Null model Level-2 cov.
Est  (SE) Est (SE) Est  (SE)

Fixed part
3y [-cons] 3,117 (41) 3.468 (7) 3.216  (26)
J» [smoke] -218  (18)
3 [male] 121 (10)
J; [mage] 8 (1)
5 [hsgrad] 57  (25) 131 (25)
Js [somecoll] 81 (27) 181 (27)
37 [collgrad] 91 (28) 233 (26)
Jy [married] 50 (26) 115 (25)
y [black] 211 (28) —201  (29)

i J10 [kessner?)] -93  (20)

6 ' D1y [kessner3] —151  (41)

1 312 [novisit] -30  (66)

> s [pretri] 93 (23)

45 P14 [pretrid] 179 (52)

fg Random part

— N 339 368 348

o Vo 371 378 378

967 Derived estimates

w0 R 0.09 0.00 0.05

' P 0.46 0.49 0.46

on s not g

covari®® ing xtmixed

eans tlli}[* £

for 3d“ki om-intercept model (3.2) can also be fitted by maximum likelihood using

‘a moﬂt“‘3 th the mle option:

_ estimat™

(Continued on next page)
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3.4.3 Using gllamm

Al though we do net recommeny using
Xtreg , ixed anq Sometimeg |,
in g1llampy may }

YV De the only vy,
will see in Seéction 3.9

8llamn fo, line

Sy acturate, ¢,
ay to oht
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“Casiong ‘Where estimation
ain certain kinds of Imation Options as we
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time for this ex:
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1The gllamm command for fitting the model is
. gllamm birwt smoke male mage hsgrad somecoll collgrad married black
> kessner2 kessner3 novisit pretri2 pretri3, i(momid) adapt

8604
3978

number of level 1 units
number of level 2 units

Condition Number = 8059.0645

gllamm model

log likelihood = -65145.752
birwt Coef . Std. Err. z P>zl [95% Conf. Intervall
smoke -218.3289 18.20989 -11.99 0.000 -254.0197 -182.6382

male 120.9375 9.558726 12.65 0.000 102.2027 139.6722
mage 8.100549 1.347267 6.01 0.000 5.459954 10.74114
hsgrad 56.84715 25.03541 2.27 0.023 7.77866 105.9156
somecoll 80.68607 27.30816 2.95 0.003 27.1611 134.211
collgrad 90.83273 27.99601 3.24 0.001 35.96157 145.7039
married 49.9202 25.50322 1.96 0.050 -.0651828 99.90559
black -211.4138 28.27821 ~7.48 0.000 -266.8381 -155.9895
kessner2 -92.91883 19.92625 -4.66 0.000 -131.97386 -53.86409
kessner3 -150.8759 40.83416 -3.69 0.000 -230.9094 -70.84242
novisit ~30.03035 65.69217 -0.46 0.648 -158.7846 98.72394
pretri2 92.8579 23.1926 4.00 0.000 47.40125 138.3145
pretri3 178.7295 51.64148 3.46 0.001 77.5141 279.945
_cons 3117.191 40.97601 76.07 0.000 3036.88 3197.503

Variance at level 1

137392.81 (2867.2533)

Variances ang covariances

are close to those using xtreg and xtmixed. Estimation takes a long
am;ﬂe, so if there is any chance we may need the estimates again—for
m diagnostics—we should keep the estimates in memory for later use

equired in a future Stata session, they can also be saved in a file
e
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d

. - xtreg birwt, i(momid) mle
the pro-
sates Random-effects ML regression Number of obg = 8604
ovariates Group variable: momid Number of groups = 3978
Random effects u_i - Gaussian Obs per group: min = 2
_ . avg = 2.2
Yy, 50 the max = 3
model, , Wald chi2(0) = 0.00
-65475.486

Log likelihood =

.cons
nary linear

e /sigma_u 368.2866  6.45442 355.8509  381.1568
ot IBPTL'P“, /sigma_e 377.6578  3.926794 370.0393  385.4331
1 model of rho 4874391 0114183 .4650901 .5098276

orest. The variance is estimated ag
o + b0
For-the model
17)\1 +6,
n by lows that
R?

of the variance igs expl

o of level-

3.5 Coefficients of determination or v

First. we fit the nuyl) model,

Coef.

3467.969

Likelihood-ratio test of sigma_u=0:

The estimates for thig model

including all covariates, whose estimates are giv
table 3.1, the total residual variance is estimated as

ained by the covariates.

enbush and Bryk (2002)
flance Components separa,
v the Covariates ig

B2 — Yo—P1 3682866 335 7862
%

1 variance explained is

b~ 0 _ 377.6578 _ 370,657
b

ariance explained 103

also often called the unconditional model:

Prob > chi2 =

Std. Err. [95% Cont. Interval]

7.137618 485.87 0.000 3453.979 3481.958

chibar2(01)= 1315.66 Prob>=chibar2 = 0.000

are also given under “Nyjj model” in table 3.1. The total

368.28662 +- 377.6578% = 278260.43
en under “Full model” in
338.76867 + 370.66482 — 252156.56

273260.43 — 252156.56
278260.43

suggest considering the proportional reduction in each
tely. In our example, the proportion of level-2 variance "

368.28662

377.65782




Chapter 3 Random-jntercept Modgly

LR chi2(s)
Prop > chin

. 6.390249 335, 8421
377.7638 3.929694 370. 1397
4592645 -0118089
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