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2 Variance-components models

2.1

Introduction

Units of observation often fall into groups or clusters. For example, individuals could be
nested in families, hospitals, schools, neighborhoods, or firms. Longitudinal data also
consist of clusters of observations made at different occasions for the same subject. For
rwo examples of clustered data, the nesting structure is depicted in figure 2.1.

In clustered data, it is usually important to allow for dependence or correlations
among the responses observed for units belonging to the same cluster. For example,
the adult heights of siblings are likely to be correlated because siblings are genetically
related to each other and have usually been raised within the same family. Variance-
components models are designed to model and estimate such within-cluster correlations.
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2.2 How reliable are peak-expiratory-fow measurenents?

Table 2.1: Peak-expiratory-flow rate measured on two occasions using both the Wright

and the Mint Wright peak flow meters

Wright Mini Wright
peak flow meter peak flow meter
Subject  First  Second First  Second
1 494 490 512 525
2 395 397 430 415
3 516 512 520 508
4 434 401 428 444
5 476 470 500 500
6 557 611 600 625
7 413 415 364 460
8 442 431 380 390
9 650 638 658 642
10 433 429 445 432
11 417 420 432 420
12 656 633 626 605
13 267 275 260 227
14 478 492 477 467
15 178 165 259 268
16 423 372 350 370
17 427 421 451 443

First, we load the data into Stata using the command

. use http://www.stata—press.com/data/mlmusQ/pefr

The ﬁlfst and second recordings on the Minj Wright peak flow meter can be plotted
st _the subject identifier with a horizontal line representing the overall mean by

= (wml+wm2) /2

Mean Std. Dev.

17 453.9118 111.2912

er wml id, msymbol(circle))
ST wm2 id, msymbol(circle_hollow)),
1‘3) x1label(1/17) ytitle (Mini Wright measurements)
Occasion 1" 2 "Occasion 2")) yline(453.9118)
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2.3.1 Model specification and path diagram

els

Yij = ,t3+§,'j (2])

where &;; are residuals or error terms that are independent over both subjects and occa-
sions (the Greek letter £ is pronounced xi). However, this specification is unreasonable
<ince. as we have seen in figure 2.2, measurements are expected to be more similar
within than between subjects or in other words be dependent within subjects.

We can model this dependence by splitting the residual &;; into two components: a
component (; (¢ is pronounced zeta), which is specific to each subject j and constant
across occasions ¢, and a component e;;, which is specific to each subject j at each

TSR e

occasion 1

yij = A+ e (2.2)

as shown for a single subject in figure 2.3. Here ¢ is the random deviation of subject j's
mean measurement {(over a hypothetical population of measurement occasions) from the
overall mean 3. The component ¢, often called a random effect of subject or a random
intercept, has zero population mean and variance ¥ (pronounced psi) over subjects and
is assumed to be independent over subjects. The component ¢;;, often called the residual
or within-subject residual, is the random deviation of y;; from subject j’s mean. This
residual has zero population mean and variance 8 (pronounced theta) over occasions
and subjects, and is assumed to be independent over both subjects and occasions. We
can interpret 1 is the between-subject variance and 6 as the within-subject variance.
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In classical psychometric test theory, (2.2) represents a measurement model where
B+ ¢; is the true score for sub ject 7, defined as the long-term mean measurement (e.g.,
Streiner and Norman 2003)

—— population mean 3+ ¢; for subject j
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lom We can display the random part of the model (every term except J) using a path
t.op diagram as shown in figure 2.5. Here the rectangles represent the observed responses Y1y
2t ) and ya; for each subject 7, where the j subscript is implied by the labe] “subject ;7 inside
bJ_eCt' the frame surrounding the diagram. The long arrows from G to the responses represent
efore _ regressions with slopes equal to 1, and the short arrows pointing at the responses from
tton ' below represent the additive level-1 residuals e;; and €2;.
{rawn -
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Figure 2.5 Path diagram of random part of random-intercept mode]
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The corresponding correlation, called the intraclass correlation. becomes
of the
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Thus p previously given in (2.3) also represents the within-cluster correlation, which
cannot be negative because ¥ > 0. We see that between-cluster heterogeneity and
variance within-cluster correlations are different ways of describing the same phenomenon: both
are zero when there is no between-cluster variance ¥» = 0 and both increase when the

hetween-cluster variance increases relative to the within-cluster variance.

2.3} —— L . . o . .
( I'he intraclass correlation is estimated by simply plugging in estimates for the un-
kunown parameters
. H ~
5 ﬁ + 45 w
b (\ 0 = -
pent). an ==
) P+ 0

1d Normat
riance !
R’Z n nl\(’k\r

Figure 2.6 shows data with an estimated intraclass correlation g = 0.58 and data with
an estimated intraclass correlation p = 0.87.
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lower intraclass correlation (left) and higher intraclass corre-

ed;intra}class correlation, the Pearson correlation 7 is ob-
tions in (2.4) by sample means and plugging in separate
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2.4 Lixed versus random effects

61

models
nuknown ). and whereas the Pearson correlation can only be obtained by making an ar-

she twO . bitrary assiginnent to y;; and Y25 for each twin-pair, the intraclass correlation does not
vequire this. Twins are an example of exchangeable dyads. where the intraclass correla-
rion is more appropriate, whereas married couples are an example of nonexchangeahle
or distinguishable dyads where the Pearson correlation between husbands 1 and wives
yo, 15 more appropriate because it is usually difficult to Justify that husbands and wives
have the same population mean 3. Another difference between the intraclass correla-

Jrrelation tion and the Pearson correlation is that the latter is only defined for pairs of variables

dight peak whereas the former summarizes dependence for clusters of size larger than 2 and clusters

systematic of variable sizes: see for example exercise 2.4.

ymponents

1ch smaller

£097)- 4 2.4 Fixed versus random effects

) since itis ¢ : o . 7

tive Means. ‘ Fach subject has a different effect ¢; on the measured peak-expiratorv-flow rates. in

11 or pooled analysis of variance (ANOVA) terminology (see sec. 1.4 and 1.9). the subjects can there-
fore be thought of as the levels of a factor or categorical explanatory variable. Since the

ot which elfects of subjects are random. the variance-components model is therefore sontetimes
ament, v

i referred to as a one-way random-effects ANOVA model.
1 is therefor

the intraclass The one-way random-effects ANOVA model can be written as

Vi = BHGtey, eyl ~ N(0,0) G~ N(0.¢) (:

[N
kay

5)
where (5 is a random intercept. In contrast, the one-way fixed-effects ANOVA model
becomes
J
Yi; = B+ Q5 + €, €55 ~ JV(O, G) Zaj =0 (96)

J=1

“’k?ﬁf? @; are unknown cluster-specific parameters. In the random-effects model, the ran-
(i,ffmv‘m‘t?rcepts are independent across clusters and independent of the level-1 residuals,
%;::;: ?Qf;h r‘nodels the level-1 residuals are independent across units. Both random-
\ 'mOdels and fixed-effects modelg include cluster-specific intercepts, ¢; and aj re-

to account for unobserved heterogeneity. Thus a natural question is whether
dom- or fixed-effects approach. '

alswering this question is by being explicit about the target of inference,
€ lpterest Concerns the population of clusters or the particular clusters
-8re interested in the variance i for the population of clusters or
the POpulation mean £ when both clusters and units are viewed

Ve populations, a random-effects approach must be used. In
ested in the “effects” @; of the clusters in a particular dataset

(and not clusters) are taken as sampled, a

> Viewed a5 sampled from

. a population mostly affects the
a3 we will see in section 3

2.7.2 but can also affect [ itself.
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2.5.2 Using xtreg 63

list if id < 6, clean noobs

id wpl wp2 wmi wm2 mean_wm

1 494 490 512 525 518.5
2 395 397 430 415 422.5
3 516 512 520 508 514
4 434 401 428 444 436
5 476 470 500 500 500

However. we need to stack the occasion 1 and 2 measurements using a given meter into
one variable. We can use the reshape command to obtain such a long format with one
variable wp for both Wright peak flow meter measurements. one variable wm for both
Mini Wright peak How meter measurements. and a variable occasion (equal to 1 and
) 4 2} for the measurement occasion:

0 . reshape long wp wm, i(id) j(occasion)
(note: j = 1 2)

Data wide -> long
as
- Number of obs. 17 -> 34
' Number of variables 6 > 5
j variable (2 values) ->  occasion

xij variables:

wpl wp2 -> wp
wml wm2 -> wm

The data for the first five subjects now look like this:

- list if id < 6, clean noobs

id  occasion wp Wo mean_wm
1 1 494 512 518.5

2 490 525 518.5

2 1 395 430 422.5

2 2 397 415 422.5

-3 1 516 520 514
3 2 512 508 514

4 1 434 428 436

2 401 444 436

6 1 476 500 500
2 470 500 500

reshape command, i() is used to specify clusters, denoted j in this
S used to specify units within clusters, denoted 7 in this book.

he parameters of the variance-components model (2.2) using the
€ mle option, which stands for maximum likelihood estimation

tmand, the response variable wm and explanatory variables are
@e. In the variance-components models, the fixed part is
Included by default, so we do not specify any explanatory
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lels 2.5.3 Using xtmixed 65

ot ] 2.5.3 Using xtmixed

. be . . ] . . . . .
The variance-components model considered here is a simple special case of a linear
mixed-effects models that can be fitted using the xtmixed command (available as of
Stata 9).

The fixed part of the model, here 3, is specified as in any estimation command in

Stata (response variable followed by list of explanatory variables). The random part,
; except the residual ¢;;. is specified after two vertical bars ||. To include a random
2 intercept ;. which varies between subjects whose identifier is in the variable id. the
0 syntax is simply id: because a random intercept ¢; is included By default (it can be
excluded using the noconstant option). Finally, we can request maximum likelihood
;]‘ estimation using the mle option:
;,; . xtmixed wm || id:, mle
’_,__ Mixed-effects ML regression Number of obs = 34
249 Group variable: id Number of groups = 17
656 Obs per group: min = 2
1545 avg = 2.0
— max = 2
.000

Wald chi2(0) =
Log likelihood = -184.57839 Prob > chi2 =

, declared
command

wm Coef. Std. Err. z P>lz] [95% Conf. Intervall

453.9118 26.18616 17.33 0.000 402.5878 505.2357
roups (the
gput and it
yd of q used Random-effects Parameters Estimate Std. Err. [95% Conf. Intervall
31 oceasions id: Identity
mtation' sd(_cons) 107.0464 18.67857 76.0406 150.6949

the output:

e rando®
i the with™
OWS ¢hat the

sd(Residual) 19.91083 3.414679 14.22688 27.86565

est vs.

linear regression: chibar2(01) = 46.27 Prob >= chibar2 = 0.0000

table of estimates for the fixed part has the same form as that for xtreg and
lrp,ation commands. The random part is given under Random-effects
H@P sd(_cons) is the estimate of the random-intercept standard deviation
Sidual) is the estimate of the standard deviation v/8 of the level-1
€ estimates are identical to the estimates using xtreg and are given

xed” in table 2.2. We could also obtain estimated variances (instead

ns) with their standard errors using the variance option.

; nd'lcatmg .
iy is 2
ot variah® erences in the terminology and notation used in this book and the
¢ als0 g 91 _th.lixed. Using the usual multilevel or hierarchical modeling
€ indices { for occasions and J for subjects and call the corre-

In contrast, the xtmixed documentation uses i for subjects
8 subjects level 1. Contrary to common terminology where
data are called two-level models, the xtmixed documenta-




