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2.5.4 Using 8llamm
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8llamm yy

gllamm mode]

log likelihood =

-184457839
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The output rom gllamm first shows the number of units at each level, here 34 units at
level | (the total nunber of measurements) and 17 units at level 2 (the subjects). If
the Condition Number is very large, the model may not be well identified. but here it
is not alarming.

Next the maximized log likelihood is given as —184.58 followed by a regression table
giving the estimated fixed regression coefficient 5 next to _cons.

Estimates and standard errors for the random part of the model are given under
the headings "Variance at level 1” for the variance 8 of the level-1 residuals €;5 and
“Variances and covariances of random effects” and “¥xxlevel 2 (id)” for the
variance ¢ of the random intercept (- Variance estimates from gllamm are presented
mder “gllamm” in table 2.2.

xtreg and xtmixed display the estimated standard deviations instead of variances.
We can convert these standard deviations to variances 0 = 19.91083% = 396.44115
and z& =107.04642 = 11, 458.932, which differ slightly from the estimates using gllamm.
The reason for the discrepancy is that gllamm uses numerical integration, whereas Xtreg
and xtmixed exploit the closed form of the likelihood for random-effects models with
normally distributed continuous responses. The accuracy of the gllamm estimates can
be improved by increasing the number of integration points (see section 6.11.1) using
the nip() option.

Table 2.2: Maximum likelihood estimates for Mini Wright peak flow meter

Est (SE)

Fixed part
J5} 453.91 (26.18)

Random part

Xtreg, xtmixed

Vi 107.05
Ve 19.91

gllamm
P 11,456.83
¢ ‘ 396.71

Log likelihood —-184.58

Slight discrepancies between estimates due
to numerical integration in gllamm

€ analyses, we save the gllamm estimates using estimates store:
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be 2.6.2 Hypothesis test and confidence interval for the between-cluster
ving variance ’

the . . . . ,
stes We now consider testing hypotheses regarding the between-cluster variance w. In par-

ticular, we are often interested in the hypotheses
Hy =0 against H,: ¢ >0

This null hypothesis is equivalent to the hypothesis that ¢; = 0 or that there is no
random intercept in the model. If the null hypothesis is true, we can use ordinary

nean reeression instead of a variance-components model.
s are Likelihood-ratio tests are typically used with the test statistic
ics ¢
L = 2(/1 - l())
where {; is the maximized log likelihood for the variance-components model (which
includes ;) and [y is the maximized log likelihood for a model without ¢;. Importantly,
the distribution of L under Hy is not ¥? with 1 degree of freedom as usual. This is
because the null hypothesis is on the boundary of the parameter space since v > (),
which renders standard statistical test theory invalid.
discussed If the variance-components model is used for replicated datasets generated under
the null hypothesis, we would expect positive correlations among the responses about
Jing half of the time and negative correlations the other half of the time. Thus 1 would be
'Sémi. 0; estimated as positive half of the time and as zero (since negative correlations cannot
;f:gzglre% be produced by nonnegative ¢ in the variance-components model) the other half of the

time. The correct sampling distribution under the null hypothesis hence takes a simple
form, being a 50:50 mixture of a spike at 0 and a x? with 1 df. The correct p-value can
be obtained by simply dividing the “naive” p-value, based on the x2 with 1 df, by 2.

»n does not
3) Sarmph_ng Z
Jistributio?
a.) The md.l ’
~expiratot

p-value is given at the bottom of the xtreg and xtmixed output, where the cor-
ng distribution is referred to as chibar2(01) (click on chibar?2 (01), which is
ue in the Stata output window to find an explanation). We can also perform
od-ratio test ourselves by fitting the variance-components model, storing the

then fitting the model without the random intercept, and comparing the
the 1rtest command:

Xtmixed wm || id:, mle
3-Store ml .

LR chibar2(01)
Prob > chibar2

46.27
0.0000

fix command is used to suppress output from xtmixed. In the 3
fQIfS to the estimates stored under that name and “.” refers to
mates. For the peak-expiratory-flow application, we see that

189 =0 has a very small p-value and the null hypothesis is
cance levels. 3
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Als 2

e . sort id

' format ebl eb2 %g.o¢

list id ebl eb2 if occasion==1, clean noobs

id ebi eb2
. 1 63.49 63.49
2 -30.88  -30.88

: 3 59.07 59.07

4 -17.61 -17.61

the : 5 45.30 45.30
6  155.89  155.89

5 the 7 -41.20 -41.90
. the 8  -67.74  -g7.74
0 9 192.75  199.75
mken 10 -15.15  -15.15
Lence 11 -27.44 97 44
) 12 158.84  158.84
13 -206.83 -206.g3

14 17.78 17.78

15 -187.17  -187.17

16 -92.31  -gp 3y

17 -6.79 -6.79

Both miethods give identical results to two decimal places.

There are no simple formulas for empirical Bayes predictions for the models for
ined as lencontinuous responses considered in later chapters. For such models, we would have
5p€'dte?l to use the gllapred command with the u option (after restoring the gl1amn estimates):
as wel
wd and estimates restore R
, known gllapred eb, u
. e s . .

;10115.ar € predictions woyld then be placed in the variable ebm1 and would be close to the
ragzze“v in eb1 and epy. :

" %
€10

unbiasé

Empirical Bayes variances
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Xpress uncertainty
tthese variances d
they are treated

s of variances for empirical Bayes predictions that can
regarding the predictions. However, it ig important to
0 not take into account the uncertainty in the parameter
as known in empirical Bayes prediction.

(dl‘crtion-error variances

of the random intercept ¢; given the observed
distribution shown as a dashed curve in fig-
, the posterior variance is




dev1ations Will pe Stored i, ebmy ebs1)
Asg indicated by the output, the required Posterior Standayg eViationg are storeq in
the Variabje ebs1. hese Standarq deviations are identicai for a clusteyg becayse the
clusterg have the Same sjzq 7 =250 that 718 the same for a]) clusters, We therefor,
display only the value for the firgt observation:
. display ebsif1]
13.96347¢
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- display sqrt(.982998324107.05°2)
106.13608

Conditional sampling variances

The variance of the empirical Bayes prediction over repeated samples of ¢;; for a
given (; (or repeated samples of units from the same cluster) is given by

Var((FPIg) = RBy(1- Ry) &

We can compute the conditional sampling standard deviation using

. display sqrt(.98299832*(1—.98299832)*107.05"2)
13.839136

Comparing the empirical Bayes variances

IfR; > 0.5, as is usually the case in practice,

we obtain the following relations
among the empirical Bayes variances:

Var(CN]EB]Cj) < Var(Glyiy. ya;) = \r"'a,r(EFB ~(i) < Vau‘(g_FB)

As we would expect, these relations are satisfied for the Mini Wright data since f%, =0.98.

210 Summary and further reading

chapter, we introduced the idea of decomposing the total variance between
0 variance components, specifically the between-cluster variance 1 and the
€f variance 6. This was accomplished by specifying a model that includes
EITor components, a, level-2 random intercept (; for clusters, and a level-1
units within clusters. The random intercept induces correlations among

ts in the same cluster, known as the intraclass correlation.

underlie all multilevel or hierarchical modeling. By considering the
u ‘level model, we have provided some insight into estimation of un-
er.s and prediction of random effects. We have also shown how to
ting and construct confidence intervals for variance-components
Pressions for estimators and predictors become more complex
later chapters, the basic ideas remain the same.

ut variance-

many of the

and Webbh

components models, we recommend Snijders and
books referred to in later chapters. Streiner and
(1991), and Dunn (2004) are excellent books on




