POLI574 – Discrete Choice

Acknowleding a great debt to Matt Golder's notes, themselves dependent on Train (2007)

Modeling Categorical Outcomes

- Dependent variable is unordered categories
 - Vote choice
 - Choice of policy instrument
 - Outcome of inter-state interactions (e.g. war, trade)
- OLS doesn't work, except LPM for 2 categories
- Logit/Probit are also for 2 categories
- Frequently two outcomes 'closer' together than to other outcomes (see 'IIA' later)
- Frequently nested choices or selection effects

But first... review Binary Dependent Variables

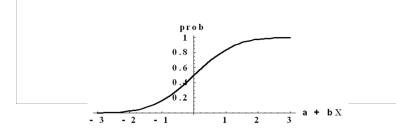
- Recall the linear probability model, which can be written as $P(y = 1 | \mathbf{x}) = \beta_0 + \mathbf{x}\boldsymbol{\beta}$
- An alternative is to model the probability as a function, $G(\beta_0 + x\beta)$, where 0 < G(z) < 1
- This G just translates or squishes -- the linear additive model into the 0 to 1 space

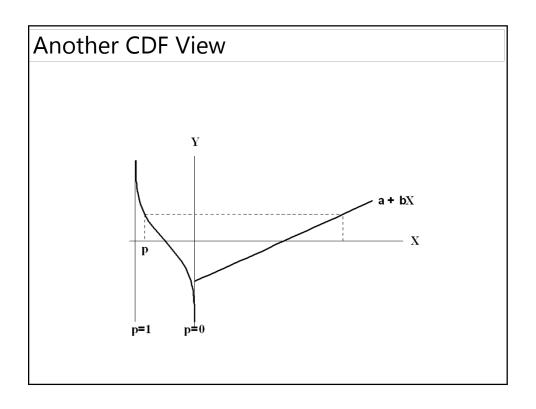
Logit

- A common choice for G(z) is the logistic function, which is the *cumulative distribution function* for a standard logistic random variable
- $G(x\beta) = \exp^{(x\beta)}/[1 + \exp^{(x\beta)}]$ or $1/[1-\exp^{-x\beta}]$
- We're taking numbers from ∞ to + ∞ and transforming those numbers using this cumulative distribution function

Binary Data – View 1 (CDF)

• View 1 – we compute a number that is a linear combination of our predictors, call it $y=\alpha+\beta x$. We then convert y into a probability p by using a cumulative distribution function (CDF). Our outcome is 1 with probability p.





Binary Data – View 2 (Latent or Unobserved Variable)

 View 2 – we compute a number that is a linear combination of our predictors and then add an error term, call it

$$y^* = \alpha + \beta x + u$$

We then get an outcome of 1 if $y^* >= 0$, outcome 0 if $y^* < 0$. In this case, the probabilistic element is the error term u, and y^* is an <u>unobserved variable</u>.

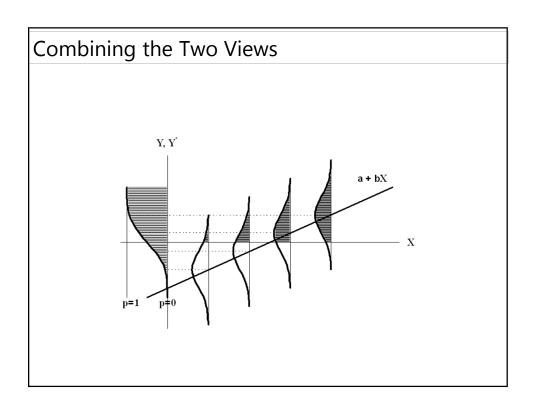


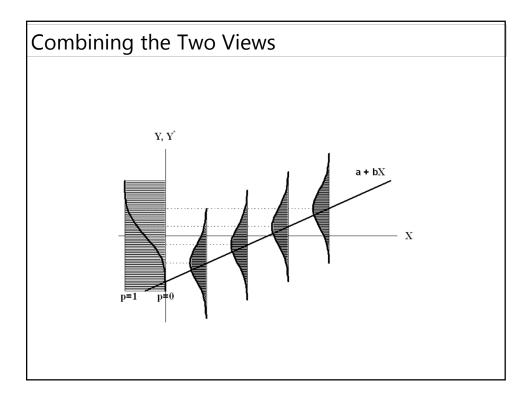
Binary Data - Unobserved Variable View

PDF of Y*

Comparing CDF and Latent Variable Views

■ The two views are equivalent. Each one can be converted into the other, where the cumulative probability function (CDF) in view 1 matches the CDF of the distribution of *u* in view 2.





These are all NONLINEAR models

- The rate of change in the dependent var with respect to the independent var
 IS NOT CONSTANT
- So we have to estimate coefficients by trial and error
- So... maximum likelihood

Likelihood and Traditional Probability

- Theory of likelihood is the reverse of traditional probability theory
- Traditional theory: probability that we got this set of data given the TRUE parameter values
- In likelihood we're honest that we only have one set of data.
 So we talk about the 'likelihood' of each set of parameter values given the data we actually got
- What model (i.e. parameters) is most likely to have produced the data we collected?

Likelihood is a RELATIVE measure of uncertainty

- The likelihood function is a measure of the relative probability of all possible parameter values (i.e. estimates of the true model)
 - think of all possible parameter values. Whoah!
- So it gives us a mean (most likely parameter value) and a variance (how much more likely than others)
- The maximum of this function gives us an estimate of the mean of the parameter (vector)
- THIS APPLIES TO ALL POSSIBLE MODELS

Constructing a Likelihood (logit)

We assume a data generating process

- This applies to every observation
- For binary outcomes we assume they are generated by a Bernoulli distribution: $p_i^{y_i}(1-p_i)^{1-y_i}$
- Then we model p, the probability (our model), as a function of expalanatory variables: $p_i = g(x_i, \beta)$
- For logit, let $p_i = \frac{1}{1 + \exp(-x_i\beta)}$
- Now, since our observations are independent...
- The probability of all of the Y given one particular value of p (i.e. the model) is equal to $\Pr(Y \mid p) = \prod_{i=1}^{n} p_i^{y_i} (1 p_i)^{1 y_i}$ the product of all the probabilities
- · So we combine these and get

$$\Pr(y \mid \beta) = \prod_{i=1}^{n} \left(\frac{1}{1 + \exp(-x_{i}\beta)} \right)^{y_{i}} \left(1 - \frac{1}{1 + \exp(-x_{i}\beta)} \right)^{1 - y_{i}}$$

15

Constructing a Likelihood Continued

$$\Pr(y \mid \beta) = \prod_{i=1}^{n} \left(\frac{1}{1 + \exp(-x_i \beta)} \right)^{y_i} \left(1 - \frac{1}{1 + \exp(-x_i \beta)} \right)^{1 - y_i}$$

The theory of maximum likelihood says that the likelihood function $L(\beta|y)$ is proportional to this expression

So to get the log-likelihood that's easier to work with, we take the log of the expression and we get

$$\ln L(\hat{\beta} \mid y) = \sum_{i=1}^{n} -y_{i} \ln \left[1 + \exp(-x_{i}\hat{\beta}) \right] - \left(1 - y_{i} \right) \ln \left[1 + \exp(-x_{i}\hat{\beta}) \right]$$

We've gone from products to sums and from wanting to minimize something to maximizing this function

We plug in values for β , call them $\hat{\beta}$, and do an astronomical amount of simple arithmetic to get a log-likelihood for that set of estimates.

Then we use an algorithm to search for the set of estimates that maximizes this log-likelihood

Now, Multiple Outcomes

17

Notation (follows Golder)

- n individual cases (decision makers)
- J alternatives
- *i and j* are alternative outcomes
 - i chosen outcome (choice)
 - **j** all outcomes (alternatives)
- β_j is the set of coefficients for alternative j
 (where one set is set to zero as the 'base category')
- **X** is still the linear-additive independent variables

Random Utility Model

- Differences in utility of alternatives result in choice / behaviour
- But a random component, so we get a predicted behaviour given characteristics of choices and choosers
- Probability of each outcome for each chooser
- Or: Proportion of each choice within population groups defined by combinations of characteristics

19

RUM

$$P_{ni} = \text{Prob}(U_{ni} > U_{nj} \forall j \neq i)$$

$$= \text{Prob}(V_{ni} + \epsilon_{ni} > V_{nj} + \epsilon_{nj} \forall j \neq i)$$

$$= \text{Prob}(\epsilon_{nj} - \epsilon_{ni} < V_{ni} - V_{nj} \forall j \neq i)$$

- This last step is weird
- It expresses the probability as:
 - *i* is chosen if the difference between the errors is less than the difference between the systematic difference in utilities
- Just like OLS in that the model minimizes the residuals the ϵ
- Just like all MLE in that we choose a distribution for these errors
- Then to get probabilities we calculate the integral of these unobserved utilities
 - i.e. the probability that *i* is chosen is how much probability mass is below the threshold where the difference in the errors is more than the difference in the systematic portion of the utilities.

Differences in Utility

- As Golder says: "Only Differences in Utility Matter"
- Because utility is unobserved or 'latent', and we only know whether one alternative was chosen as opposed to another, we can only think of systematic influences as relative
- So the impact of a characteristic of a chooser (e.g. female) is **not** that it produces, on average, Θ_{n1} and Θ_{n2} and so on *U*tilities for the choices.
- Instead, it just tells us about the average difference in the utility of the two choices, i.e. Θ_2 Θ_1
- Since we don't observe utility, that Θ_2 Θ_1 is indeterminate, so we just set one of them to ZERO and interpret the Θ_i parameter as the difference in the utility of the i^{th} choice from the one choice for which we set all the Θ 's to zero.

21

Logit Models for categorical outcomes

- Assume a distribution for the ε
- We actually use one that's mathematically convenient rather than substantively justified
 - Suffice to say it is a logistic dist. for choice btw any two alternatives

•
$$\frac{e^{\tilde{\epsilon}_{nji}}}{1+e^{\tilde{\epsilon}_{nji}}}$$
, where $\tilde{\epsilon}=\epsilon_{nj}-\epsilon_{ni}$

- BIG assumption is that the unobserved part of the utility of one alternative is **independent** of the unobserved part of other alternatives (IIA, more later)
- Means you've got a good, well-specificed model: one that includes all systematic influences on the choices

Multiple Outcome Logit Choice Probabilities

- So the choice of one alternative by a chooser indicates that the error for each other choice was below $\epsilon_{ni} + V_{ni} V_{nj}$
- With multiple choices, we need the probability that this is true for all $j \neq i$, which is the product of all of the cumulative distributions of the errors for all the non-chosen choices, relative to the distribution of the errors of l (that's roughly what Golder's eq. 16 says)
- That's the criterion analogous to 'least-squares' for OLS
- So the MNL choice probabilities are

$$P_{ni} = \frac{e^{x_{ni}\beta}}{\sum_{j} e^{x_{nj}\beta}}$$

And the log likelihood is this over all choices and choosers

2:

Two models, MNL and CoLogit

- Golder does Conditional Logit before Multinomial Logit
- Weird choice, but it makes a bit of sense
- I'm going to follow him

Conditional Logit

- Pure Conditional Logit involves only characteristics of choices
- Transportation models involved price, speed, comfort of each of modes of transport
- Notice that the x are subscripted by nj, meaning they are about the decision-maker relative to the alternatives $U_{nj} = V_{nj} + \epsilon_{nj} \\ = x_{nj}\beta + \epsilon_{nj}$
- Like 'distance' from a party on policy, or a country's distance from potential allies or adversaries
- β has no subscript because the effect of this variable is constant across alternatives
 - E.g. 'distance' or higher price makes you less likely to choose something
 - · Speed, comfort make choice more likely

25

Conditional Logit in Stata

Vote Choice in Quebec, 2011

clogit choice samelang dist_corptax, group(id)

```
Iteration 0: log likelihood = -2197.0125
Iteration 1: log likelihood = -2196.8142
Iteration 2: log likelihood = -2196.8142
```

```
Conditional (fixed-effects) logistic regression Number of obs = 7428
LR chi2(2) = 42.77
Prob > chi2 = 0.0000
Log likelihood = -2196.8142 Pseudo R2 = 0.0096
```

 Coefficients are change in log-odds of choosing an alternative, for one-unit change in the independent variable

Multinomial Logit (MNL)

$$U_{nj} = V_{nj} + \epsilon_{nj}$$

The systematic component of the utility function is given as:

$$V_{nj} = z_n \gamma_j$$

So, we have

$$U_{nj} = z_n \gamma_j + \epsilon_{nj}$$

- z is equivalent to x variables
- γ (gamma) is equivalent to β
- note that the γ are subscripted, so separate 'effects' of each z (characteristic) on each choice
 - E.g. **female** may have different effects on prob of choosing each party
 - Trade deficit may have a different effect on choice of trade war, unilateral tarriff reduction, bilateral negotiation, or multilateral trade negotiation
- MNL Choice Probabilities:

$$P_{ni} = \frac{e^{x_{ni}\beta}}{\sum_{j} e^{x_{nj}\beta}}$$

27

MNL identification

- Attributes of choosers don't vary across alternatives
- So they can only create differences between alternatives
 - e.g. educ level can only make some parties more likely to be voted for
- Simple solution: set all coefficients for one alternative to Zero
- Coefficients are always about the difference in choice probabilities between two of the choices
- As a decision-maker becomes more likely to choose one alternative, she is less likely to choose others
- This just works out to a different set of independent variables.
 The likelihoods are basically the same.

MNL is binary logits!

- MNL estimates the same parameters as a series of binary logits
- It's slightly more efficient (see Alvarez and Nagler)
- This is because of IIA
- Later, we'll talk about relaxing IIA

29

Digression: Don't estimate choice versus all others

- ... unless you have a theoretical reason to
- Cautionary tale: IS BQ voting influenced by attitude to spending on Envrmt?

vote4	1	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
	-+-						
sov	1	2.455879	.179795	13.66	0.000	2.103487	2.808271
spend_EN		.1583196	.1679772	0.94	0.346	1709097	.4875489
_cons	I	-2.592755	.4599843	-5.64	0.000	-3.494307	-1.691202

No effect of Environment attitudes?

MNL in	Stata					
. mlogit vote	sov spend_El	1				
Multinomial logistic regression Log likelihood = -1149.7148					er of obs = ii2(8) = > chi2 = lo R2 =	353.81 0.0000
vote		Std. Err.	z	P> z	[95% Conf.	Interval]
Liberal sov spend EN	-3.323585 0180076	.2244897	-0.08	0.936	-3.873339 4579993 1703772	.4219842
spend_EN	-3.063571	.2053723	-4.53	0.000	-3.582689 -1.33244 2.307323	5273956
spend_EN _cons	.0810441 .8961252	.1944765 .5389201	0.42	0.677	-2.323415 3001229 1601387	.4622111
Bloc_Quebe~s		ome) 				
spend_EN	-1.252255 1.313919	.6122771	2.15	0.032	-2.018175 .1138781 -8.482515	2.51396