POLI574 — Discrete Choice

Acknowleding a great debt to Matt Golder’s notes,
themselves dependent on Train (2007)

Modeling Categorical Outcomes

* Dependent variable is unordered categories
- Vote choice
- Choice of policy instrument

- Outcome of inter-state interactions (e.g. war, trade)

» OLS doesn’t work, except LPM for 2 categories
* Logit/Probit are also for 2 categories

" Frequently two outcomes ‘closer’ together than to other
outcomes (see ‘IIA’ later)

* Frequently nested choices or selection effects




But first... review Binary Dependent Variables

Recall the linear probability model, which can be
written as P(y = I|x) = f, + xf

An alternative is to model the probability as a
function, G(, + xf), where 0<G(z)<1

This G just translates — or squishes -- the linear
additive model into the 0 to 1 space

Logit

A common choice for G(z) is the logistic function,
which is the cumulative distribution function
for a standard logistic random variable
G (xB) = exp™®/[1 + exp*A)]
or 1/[1-exp>F]
We're taking numbers from - oo to + oo

and transforming those numbers using this
cumulative distribution function




Binary Data — View 1 (CDF)

= View 1 — we compute a number that is a linear
combination of our predictors, call it y=a+ x. We
then convert y into a probability p by using a
cumulative distribution function (CDF).
Our outcome is 1 with probability p.

Another CDF View

a+ bX

a+ bX
k




Binary Data — View 2 (Latent or Unobserved Variable)

* View 2 — we compute a number that is a linear combination of
our predictors and then add an error term, call it
y'=a+Bx+u
We then get an outcome of 1 if y* >= 0, outcome 0 if y* < 0.
In this case, the probabilistic element is the error term u, and
y* is an unobserved variable.

Binary Data — Unobserved Variable View
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Comparing CDF and Latent Variable Views

* The two views are equivalent. Each one can be converted into
the other, where the cumulative probability function (CDF) in
view 1 matches the CDF of the distribution of u in view 2.

Combining the Two Views




Combining the Two Views

1y

These are all NONLINEAR models

The rate of change in the dependent var with respect to the
independent var

IS NOT CONSTANT

So we have to estimate coefficients by
trial and error

So... maximum likelihood
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Likelihood and Traditional Probability

* Theory of likelihood is the reverse of
traditional probability theory

» Traditional theory: probability that we got this set of data
given the TRUE parameter values

* In likelihood we're honest that we only have one set of data.
So we talk about the ‘likelihood’ of each set of parameter
values given the data we actually got

»  What model (i.e. parameters) is most likely to have produced
the data we collected?

Likelihood is a RELATIVE measure of uncertainty

The likelihood function is a measure of the relative
probability of all possible parameter values (i.e.
estimates of the true model)

. think of all possible parameter values. Whoabh!

= So it gives us a mean (most likely parameter value)
and a variance (how much more likely than others)

®  The maximum of this function gives us an estimate
of the mean of the parameter (vector)

THIS APPLIES TO ALL POSSIBLE MODELS




Constructing a Likelihood (logit)

We assume a data generating process

* This applies to every observation

* For binary outcomes we assume they are generated by a
Bernoulli distribution: p (1 —p,) "

* Then we model p, the probability (our model),
as a function of expala?atory variables: p; = g(x;, B\

* Forlogit, let #.= W

* Now, since our observations are independent...

* The probability of all of the Y given one particular value of
p (i.e. the model) is equal to Pl | py=T]p}d-p)™
the product of all the probabilities o

* So we combine these and get
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Constructing a Likelihood Continued
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The theory of maximum likelihood says that the likelihood
function L(Bly) is proportional to this expression

So to get the log-likelihood that's easier to work with, we take
the log of the expression and we get

In L ,{? y)= ) '— b7 111[l+t:\p (—x, ,ZJ )]—ll—1 lln[l+t:\p( x p}]

We've gone from' droducts to sums and from wanting to
minimize something to maximizing this function

We plug in values for B, call them /ﬁ and do an astronomical
amount of simple arithmetic to get a log-likelihood for that
set of estimates.

Then we use an algorithm to search for the set of estimates that
maximizes this log-likelihood




Now, Multiple Outcomes
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Notation (follows Golder)

n individual cases (decision makers)
J alternatives

i andj are alternative outcomes

« { chosen outcome (choice)

. jall outcomes (alternatives)

B; is the set of coefficients for alternative j
(where one set is set to zero as the ‘base category’)

X is still the linear-additive independent variables

(£ V]
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Random Utility Model

= Differences in utility of alternatives result in choice / behaviour

= But a random component, so we get a predicted behaviour
given characteristics of choices and choosers

* Probability of each outcome for each chooser

= Or: Proportion of each choice within population groups
defined by combinations of characteristics

19

RUM

Py = Prob(Uy; > Uy;Vj # 1)
= Prob{"':'u + Eni > lf;"_f T (':u_'i..;"rj # “

= This last step is weird = Prob(en; — tni < Vi — VsV # )
= [t expresses the probability as:

« [ is chosen if the difference between the errors is less than the
difference between the systematic difference in utilities

= Just like OLS in that the model minimizes the residuals — the €

= Just like all MLE in that we choose a distribution for these
errors

= Then to get probabilities we calculate the integral of these
unobserved utilities

i.e. the probability that ( is chosen is how much probability mass is
below the threshold where the difference in the errors is more than the
difference in the systematic portion of the utilities. 20
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Differences in Utility

= As Golder says: "Only Differences in Utility Matter”
= Because utility is unobserved or ‘latent’, and we only know

whether one alternative was chosen as opposed to another, we

can only think of systematic influences as relative

= So the impact of a characteristic of a chooser (e.g. female)
is not that it produces, on average, ©,, and ©,, and so on
Utilities for the choices.

= Instead, it just tells us about the average difference in the
utility of the two choices, i.e. 6,- 6,

= Since we don't observe utility, that ©, - ©; is indeterminate,
so we just set one of them to ZERO and interpret the ©;
parameter as the difference in the utility of the it" choice from
the one choice for which we set all the ©'s to zero.

21

Logit Models for categorical outcomes

= Assume a distribution for the €
= We actually use one that's mathematically convenient rather
than substantively justified

. Suffice to say it is a logistic dist. for choice btw any two alternatives

S h s
. = WNETEE = €,,; — €4
i oiTE nj ni

® BIG assumption is that the unobserved part of the utility of
one alternative is independent of the unobserved part of
other alternatives (IIA, more later)

* Means you've got a good, well-specificed model: one that
includes all systematic influences on the choices

22
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Multiple Outcome Logit Choice Probabilities

So the choice of one alternative by a chooser indicates that the

error for each other choice was below
€ni T Vni - an

With multiple choices, we need the probability that this is true

for all j # i, which is the product of all of the cumulative
distributions of the errors for all the non-chosen choices,
relative to the distribution of the errors of /

(that's roughly what Golder's eq. 16 says)

That's the criterion analogous to ‘least-squares’ for OLS

So the MNL choice probabilities are gTnil3

P = ——
£ T Z ) HI’HJ‘D‘
J

And the log likelihood is this over all choices and choosers
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Two models, MNL and Cologit

Golder does Conditional Logit before Multinomial Logit
Weird choice, but it makes a bit of sense
I'm going to follow him

24
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Conditional Logit

= Pure Conditional Logit involves only characteristics of choices

» Transportation models involved price, speed, comfort of each
of modes of transport

= Notice that the x are subscripted [/, = Vn-j + €nj
by nj, meaning they are about the
decision-maker relative to the
alternatives

= Like 'distance’ from a party on policy,
or a country's distance from potential allies or adversaries

* [ has no subscript because the effect of this variable is
constant across alternatives

E.g. 'distance’ or higher price makes you less likely to choose something

xﬂ.j,[), + €Enj

Speed, comfort make choice more likely

Next page: same language as leader makes choice more likely

distance from parties on corporate tax policy makes choice less likely 2
Conditional Logit in Stata
Vote Choice in Quebec, 2011
®" clogit choice samelang dist corptax, group (id)
Iteration 0: log likelihood = -2197.0125
Iteration 1: log likelihood = -2196.8142
Iteration 2: log likelihood = -2196.8142
Conditional (fixed-effects) logistic regression Number of obs = 7428
LR chi2 (2) = 42.77
Prob > chi2 = 0.0000
Log likelihood = -2196.8142 Pseudo R2 = 0.0096
choice | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____________ b
samelang |  .5009395  .0762589 6.57  0.000 3514749 6504041
dist corptax | -.0933343  .0478339 -1.95 0.051 -.1870869 .0004184
= (Coefficients are change in log-odds of choosing an alternative,
for one-unit change in the independent variable
26
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Multinomial Logit (MNL)

!--"rn_,r = V.r;_; + ey

The systematic component of the utility function is given as:

So, we have
'r-'r.li_f' = a7 + Enj

= Zzis equivalent to x variables
* y(gamma) is equivalent to B
= note that the y are subscripted, so separate ‘effects’ of each z
(characteristic) on each choice
E.g. female may have different effects on prob of choosing each party

. Trade deficit may have a different effect on choice of trade war, unilateral

(;J-’n")‘a'

= MNL Choice Probabilities: T3 ”

tarriff reduction, bilateral negotiatio~ ~ - -al trade negotiation

MNL identification

= Attributes of choosers don't vary across alternatives
= So they can only create differences between alternatives
e.g. educ level can only make some parties more likely to be voted for

= Simple solution: set all coefficients for one alternative to Z€IrO
= Coefficients are always about the difference in choice
probabilities between two of the choices

" As a decision-maker becomes more likely to choose one
alternative, she is less likely to choose others

* This just works out to a different set of independent variables.
The likelihoods are basically the same.
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MNL is binary logits!

= MNL estimates the same parameters as a series of binary logits
= It's slightly more efficient (see Alvarez and Nagler)
* This is because of IIA

= Later, we'll talk about relaxing IIA

29
. . 1 M M
Digression: Don’'t estimate choice versus all others
= ... unless you have a theoretical reason to
= Cautionary tale:
IS BQ voting influenced by attitude to spending on Envrmt?
. logit vote4 sov spend EN
Logistic regression Number of obs = 904
LR chi2 (2) = 243.17
Prob > chi2 = 0.0000
Log likelihood = -430.4643 Pseudo R2 = 0.2202
voted | Coef. Std. Err. z P>|z| [95% Conf. Intervall]
_____________ e
sov | 2.455879 .179795 13.66 0.000 2.103487 2.808271
spend_EN | .1583196 1679772 0.94 0.346 -.1709097 .4875489
_cons | -2.592755 .4599843 -5.64 0.000 -3.494307 -1.691202
* No effect of Environment attitudes?
30
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MNL in Stata

. mlogit vote sov spend EN

Multinomial logistic regression Number of obs = 904
LR chi2 (8) = 353.81
Prob > chi2 = 0.0000
Log likelihood = -1149.7148 Pseudo R2 = 0.1333
vote | Coef. Std. Err. z P>z [95% Conf. Interval
,,,,,,,,,,,,, o -
Liberal
sov | -3.323585 .2804922 -11.85 0.000 -3.873339 -2.77383
spend_EN | -.0180076 .2244897 -0.08 0.936 -.4579993 .4219842
_cons | 1.033057 .6140084 1.68 0.092 -.1703772 2.236492
,,,,,,,,,,,,, o -
Conservati~s |
sov | -3.063571 .2648611 -11.57 0.000 -3.582689 -2.544453
spend_EN | -.9299179 .2053723 -4.53 0.000 -1.33244 -.5273956
_cons | 3.380755 .5476791 6.17 0.000 2.307323 4.454186
,,,,,,,,,,,,, o -
NDP |
sov | -1.929275 .2010957 -9.59 0.000 -2.323415 -1.535135
spend_EN | .0810441 .1944765 0.42 0.677 -.3001229 .4622111
_cons | .8961252 .5389201 1.66 0.096 -.1601387 1.952389
,,,,,,,,,,,,, o -
Bloc_Quebe~s | (base outcome)
,,,,,,,,,,,,, o -
Green_Party |
sov | -1.252255 .3907826 -3.20 0.001 -2.018175 -.4863351
spend_EN | 1.313919 .6122771 2.15 0.032 .1138781 2.51396
_cons | -4.987046 1.783435 -2.80 0.005 -8.482515 -1.491578
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IA -1

Independence of/from Irrelevant Alternatives
= A property of the Multinomial Logit Model
« It's built into the model by assumption

= Assumption about individual choosers: their own ratio of
probabilities of two choices don't depend on other alternatives

= (Classic example is Red Bus/Blue Bus from transp. mode choice

Pr(car) _ . _ _
Pr(RedBus) 1, meaning Pr(Car) = Pr(RedBus) = 0.5
then an identical Blue Bus is introduced, we have to keep — e —
Pr(RedBus)
so we get Pr(Car) = Pr(RedBus) = Pr(BlueBus) = 0.33

= But we should have had
Pr(Car) = 0.5, Pr(RedBus) = Pr(BlueBus) = 0.25

» This is a feature of unconditional probabilities
32
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IIA - 2

* This is a feature of unconditional probabilities

=  Which means it's about the errors:
everything unexplained about the choices

= Avoid IIA with good data, right model

= Or use a different model/estimator that relaxes IIA assumption

33

Nested Logit

= Nests or Levels or Stages: different vars. for different nests
= Based on Generalized Extreme Value distribution (GEV)
= Simple:
Some stuff determines choices among nests,
other stuff determines choices within nests

=  So it avoids IIA, but IIA still holds at each level
* Nesting involves UNOBSERVED stuff

Unj = Wk + Yaj + €n;

34
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Nested Logit Probabilities

eWnkY +AkTnk etn iB/ Ak

PnB,i = X -
. Kt K SWr Y+AIn Ly Hf‘Af-'
Doy €A g, €

* Probability of choosing alternative i in nest k is

prob of choosing nest k X prob of choosing i given choice of k
= | is the ‘inclusive value’ for the nest for each person:
the value of the nest, irrespective of which alternative is chosen

* And the y, is how independent (uncorrelated) are the errors for
each alternative within a nest

* Note that in the lower-level probabilities, the X utilities for
each alternative are divided by y,

35

Multinomial Probit

= Was hailed as the saviour.... But fell flat
- Idea was to simulate different sets of alternatives and different
characteristics of alternatives to get changes in probs

= Only rarely is it worthwhile

= Errors are multivariate normal so we can estimate correlation
of unmeasured factors (u) between choices

= But only some of them

= Ttried MNP on my Quebec CES data, and it took 45 minutes!
* That's with the "full covariance matrix” of the errors

= [ could restrict it, but why not just use nested logit if we're
going to theorize a structure

36
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Censoring, Truncation, and Selection

37

Censoring, Truncation, and Selection

= (Censored Data are when we don’t have y values for
some observations (X is known)
no wage for people who choose not to work
stadium attendance beyond capacity
duration models (something hasn’t happened yet)
» Truncated Data are when don't have any data for a
certain range of the dependent variable
no data on conflicts below (or above) a certain number of battle deaths
= Selection (or sample selection) is a form of truncation
where there is a mechanism for inclusion in the

sample that does not depend deterministically on y
(though it can be related to y)

no indication of racist attitudes from REALLY racist people

e.g. no info on those who decline a survey

no sanctions in cases where they are judged unnecessary or unlikely to
succeed 38
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Censored and Truncated Likelihoods (from Kennedy)

The upper half of fierre 16.1 illnstrates why this i the case (1znore for now
the lower half of thus diazram). The relationship v = o + v = & 15 beng
estimated, where = 1= a nonnally distibured erron and observations with v
values greater than k are not known. This conld happen becanse v is the
demand for tickets to hockey mames and the arena on some oceasions 1= =old ¥ Ayt = acpu
ond =0 that for these games all we know s that the dennd for hokets s
areater than k. the capacity of the arena. These unkmown v values are
denoted by small curcles to distmguish them fiom known data pouits,
desiznated by clots. Notice that for hugh values of x the known (dotted)
observations below the (nncondinional) expectation £ = o + Py are not
fully balanced off by observations above Eny = o+ Px. becanse some of
these obzervations (the cireled ones) are missing, This causes the resulting
OLS regression e to be too flat, as shown by the dashed lne.

o -
Samples with lunited dependent variables are classified mto two zeneral
catezones, censored and truncated regression models, dependimg on whether
or not the values of » for the missing v data are known
(1) Censared somple In thus case some observations on the dependent
vanable, conesponding to known values of the mdependent vanable(s). are il
= <

nelt observable In figwe 161, for example. the v values comesponding to the
circled data points are not known, but their corresponding x valunes are Fisnire 16.1

knowa. Ina study of the deternunants of wages, for example, vou may have A linkted dep;rdmt e ]
data on the explanatory vanables for people who were not workmgz, as

well as for those who were working, but for the former there is no observed

wage

(20 Trancated senvple I thus caze values of the ndependent variable(s) are

knowen onlv when the dependent variable is obzerved. In the example of the

negative meome fx expernnent noled esrlier, no data of any kind are

avallable for those above the income threshold. they were not part of the

sample 39

Censored and Truncated Likelihoods (from Kennedy)

Teclnical Notes
16.1 Introduction

+ The bkelhood finchions for censored and truncated samples are quite different. This can be flustrated
with the help of figure 163, which graphs the density function of the error € from figure 16 1. Consider a
particular value x3 of x. For s to be observable, £z must lie to the left of & - o - Pxs; for y3 unobservable,
€3 must ke to the nght of & - o - Pxa. Thus result follows from the discussion of B2 abowe.

Suppose first we have a censored sample. If xz corresponds to an observable y, then there will be a
specific £3 and the likelihood for that observation 1 given by Lz in figure 16.3, the height of the density
function for € at €3. But if x3 corresponds to an unobservable (ie., missing) value of 3, we have no specific

2z, all we know is that £z nwst lie to the right of & - ¢ - Bas. The likelihood of this observation is thus
Penbamiiy the probability that e; exceeds & - o - fvs, given by the lined area in figure

16.3, and calenlated as 1 minus the density fanerion cumulared ro the pomt
| = o = Prs. The likelihood for each obzervation in the sample may be
| 7 calculated in one of these two ways, depending on whether the v value is
obzerved or unobserved. Multiplying together all of theze Likelihood
expressions, some of which are densities and =ome of which are cumulative
den=ities, creates the likelibood for the censored sample.

Figure 16.3
Txplauung the Lkelhood for censored and trmcated 10
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Censored and Truncated Likelihoods (from Kennedy)

Probabsility
density

Suppose now we have a truncated sample. For every possible value of 3
Hisseusnle dha E;%‘;r'r"c:;_;ﬁg;'m_nnm come from the left f}f fi- - fys in
10T 165, conzequentty e lined area should not be viewed as part of the
density of 3, Because of this, ez can be viewed as being drawn from the
truncated normal distribution given by the dashed curve i figure 16.3. This
dashed curve 13 obtamed by dividing the heieht of the orizinal normal
distribution by the dotted area. forcing the area under the dashed curve to
equal 1. Thus the likelihood of the obzervation vs is given m fizure 16.3 by

" Note that “7 is a complicated function of the data, consisting of the
height of the normal density function at the observation . ), divided by
that density function comulated to the point & - o - pxs. Each observation
will give rige to a different dashed curve from which the likelihood of that
observation can be calculated. Multiplving together all these likelihood
expression creates the likelihood function for the entire sample.

Figure 16.3
Explamnmg the hkebhood for censored and truncated
models

Sample Selection Corrections

If a sample is truncated in a nonrandom way, then

OLS suffers from selection bias

=  Can think of
where what's
selected into

as being like omitted variable bias,
omitted is how the observations were
the sample, so

E(ylz,s = 1) = xB + pAzy), where
A(c) is the inverse Mills ratio: ¢(c)/®(c)

. the chance of being in the sample

. ratio of point

%

on stdnorm pdf to point on stdnorm cdf

DL
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Selection Correction (continued)

= We need an estimate of /, so estimate a probit of s
(whether y is observed) on z

= These estimates of y can then be used along with z to
form the inverse Mills ratio

= Then you can just regress y on x and the estimated 4
to get consistent estimates of S

= See Berinsky article

44
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