Integral Calculus

Daniel Rakotonirina

January 22, 2017

Absolute Minimum/Maximum Values (sec. 12.8)

Definition 1. Let f be defined in a set \mathcal{D} in \mathbb{R}^{2} containing the point (a, b). If $f(a, b) \geqslant f(x, y)$ for every (x, y) in \mathcal{D}, then $f(a, b)$ is an absolute maximum value of f on \mathcal{D}. If $f(a, b) \leqslant f(x, y)$ for every (x, y) in \mathcal{D}, then $f(a, b)$ is an absolute minimum value of f on \mathcal{D}

Difference between Absolute Min/Max and Local Min/Max

If (a, b) is a local maximum, then $f(a, b)$ is the largest value of $f(x, y)$ in an open disk around (a, b) but it is possible to find larger value of $f(x, y)$ in its domain. So, "local maximum \leqslant absolute maximum" If (a, b) is a local minimum, then $f(a, b)$ is the smallest value of $f(x, y)$ in an open disk around (a, b) but it is possible to find smaller value of $f(x, y)$ in its domain. So, "local minimum \geqslant absolute minimum"

Finding Absolute Min/Max Values on closed bounded sets

Let f be continuous on a closed bounded set \mathcal{R} in \mathbb{R}^{2}. To find the absolute maximum and minimum values of f on \mathcal{R} :

1. Determine the values of f at all critical points in \mathcal{R}.
2. Find the maximum and minimum values of f on the boundary of \mathcal{R}.
3. The greatest function value found in Steps 1 and 2 is the absolute maximum value of f on \mathcal{R}, and the least function value found in Steps 1 and 2 is the absolute minimum value of f on \mathcal{R}

Example 0.1. Let $z=f(x, y)=x^{2}+y-\frac{3}{2} x-x y+9$ and \mathcal{R} is the closed region bounded by the triangle with vertices $(0,0),(2,0)$ and (0,2).
Step 1: Find the value of the critical points inside \mathcal{R}.

$$
\begin{array}{r}
f_{x}=2 x-\frac{3}{2}-y=0 \\
f_{y}=1-x=0 \tag{2}
\end{array}
$$

From EQ. (2), we have $x=1$. Substituting into EQ. (1), we have $y=\frac{1}{2}$. The critical point is $(1,1 / 2)$.

$$
f\left(1, \frac{1}{2}\right)=1^{2}+\frac{1}{2}-\frac{3}{2}(1)-1\left(\frac{1}{2}\right)+9=\frac{17}{2}
$$

Step 2: Find the min and max on the boundary of \mathcal{R}. The boundary of \mathcal{R} consists of vertices of the triangle C_{1}, C_{2} and C_{3}. We will consider them separately:

$$
z=x^{2}+y-\frac{3}{2} x-x y+9
$$

$z=x^{2}+y-\frac{3}{2} x-x y+9$

- $C_{1}=\{(x, y) \mid x=0$ and $0 \leqslant y \leqslant 2\}$.

On C_{1} we have $g_{1}(y)=f(0, y)=0^{2}+y-0-0(y)+9=y+9, \quad 0 \leqslant y \leqslant 2$. Then, we check for critical points and the value of f at the ending points of C_{1} :

$$
g_{1}^{\prime}(y)=(y+9)^{\prime}=1 \neq 0 \Longrightarrow \text { no critical points }
$$

So at the ending points of C_{1}, we have $g_{1}(0)=f(0,0)=9$ and $g_{1}(2)=f(0,2)=11$

- $C_{2}=\{(x, y) \mid y=0$ and $0 \leqslant x \leqslant 2\}$.

On C_{2}, we have $g_{2}(x)=f(x, 0)=x^{2}+0-\frac{3}{2} x-x(0)+9=x^{2}-\frac{3}{2} x+9, \quad 0 \leqslant x \leqslant 2$. Then, we check for critical points and the value of f at the ending points of C_{2} :

$$
g_{2}^{\prime}(x)=2 x-\frac{3}{2}=0 \Longrightarrow x=\frac{3}{4} \Longrightarrow \text { critical point }\left(\frac{3}{4}, 0\right)
$$

So $g_{2}\left(\frac{3}{4}\right)=f\left(\frac{3}{4}, 0\right)=\frac{135}{16}=8.4375$

And at the ending points of C_{2}, we have $g_{2}(0)=f(0,0)=9$ and $g_{2}(2)=f(2,0)=10$

- $C_{3}=\{(x, y) \mid y=-x+2$ and $0 \leqslant y \leqslant 2\}$.

On C_{3}, we have $g_{3}(x)=f(x,-x+2)=x^{2}+(-x+2)-\frac{3}{2} x-x(-x+2)+9=x^{2}-\frac{9}{2} x+11, \quad 0 \leqslant x \leqslant 2$. Then, we check for critical points and the value of f and the value of f at the ending points of C_{3} :

$$
g_{3}^{\prime}(x)=4 x-\frac{9}{2}=0 \Longrightarrow x=\frac{9}{8} \Longrightarrow \text { critical point }\left(\frac{9}{8}, \frac{7}{8}\right)
$$

So $g_{3}\left(\frac{9}{8}\right)=f\left(\frac{9}{8}, \frac{7}{8}\right)=8.4687$
And at the ending points of C_{3}, we have $g_{3}(0)=f(0,2)=11$ and $g_{3}(2)=f(2,0)=10$
Step 2: Comparison from steps 1 and 2

$$
f\left(1, \frac{1}{2}\right)=8.5 ; \quad f(2,0)=10 ; \quad f(0,0)=9 ; \quad f(0,2)=11 ; \quad f\left(\frac{3}{4}, 0\right)=8.4375 ; \quad f\left(\frac{9}{8}, \frac{7}{8}\right)=8.4687
$$

So $f(0,2)=11$ is the max absolute and $f\left(\frac{3}{4}, 0\right)=8.4375$ is the min absolute

