Integral Calculus

Daniel Rakotonirina

February 9, 2017

1 Integration by Parts

It is a useful method to evaluate integrals of products of functions. Given two differentiable functions u and v, the product rule states:

$$
\frac{d}{d x}(u(x) \cdot v(x))=u^{\prime}(x) \cdot v(x)+u(x) \cdot v^{\prime}(x)
$$

By integrating both sides, we can write this rule in terms of an indefinite integral:

$$
u(x) \cdot v(x)=\int \frac{d}{d x}(u(x) \cdot v(x))=\int u^{\prime}(x) \cdot v(x) d x+\int u(x) \cdot v^{\prime}(x) d x
$$

Rearranging the expression, we have:

$$
\int u(x) \cdot \underbrace{v^{\prime}(x) d x}_{d v}=u(x) \cdot v(x)-\int v(x) \cdot \underbrace{u^{\prime}(x) d x}_{d u}
$$

Here, the goal is to suppress the independent variable x. We can write it as:

Indefinite

$$
\int u d v=u v-\int v d u
$$

Definite

$$
\begin{gathered}
\int_{a}^{b} u(x) v^{\prime}(x) d x=\left.u(x) v(x)\right|_{a} ^{b}-\int_{a}^{b} v(x) u^{\prime}(x) d x \\
\text { OR } \\
\int_{a}^{b} u d v=u v-\int_{a}^{b} v d u
\end{gathered}
$$

Example 1.1. Integration by parts. Evaluate $\int x e^{x} d x$

Functions in original integral	$u=x$	$d v=e^{x} d x$
Functions in new integral	$d u=d x$	$v=e^{x}$

We have:

$$
\int x e^{x} d x=x e^{x}-\int e^{x} d x=x e^{x}-e^{x}+c=(x-1) e^{x}+c
$$

When is the "Integration by parts" the best choice to evaluate an integral?

1. The integrand is a product of functions $(u \cdot d v)$
2. u is easy to differentiate and v is easy to integrate

The integrand is a product of functions

Many books mention the ILATE rule of thumb here. These are supposed to be memory devices to help you choose your u and $d v$ in an integration by parts question. We have:

- $I=$ inverse trigonometric
- $\mathrm{L}=$ logarithmic
- $\mathrm{A}=$ algebraic
- $\mathrm{T}=$ trigonometric
- $\mathrm{E}=$ exponential

ILATE rule is supposed to suggest the order in which we choose the u.

Example 1.2.

$$
\begin{array}{r}
\int \underbrace{x}_{A} \underbrace{\tan ^{-1} x}_{I} d x \Longrightarrow u=\tan ^{-1} x \quad d v=x d x \\
\int \underbrace{x^{2}}_{A} \underbrace{\ln x}_{L} d x \Longrightarrow u=\ln x \quad d v=x^{2} d x
\end{array}
$$

Example 1.3. Integration by parts. Evaluate the following integral:

$$
\int_{1}^{e} x \ln x d x
$$

Here, we have an algebraic and a logarithmic functions. He have:

$$
\begin{aligned}
& \text { Functions in original integral } \quad u=\ln x \quad d v=x d x \\
& \text { Functions in new integral } \quad d u=\frac{1}{x} d x \quad v=\frac{x^{2}}{2} \\
& \int_{1}^{e} x \ln x d x=\left.\ln x \frac{x^{2}}{2}\right|_{1} ^{e}-\int_{1}^{e} \frac{x^{2}}{2} \frac{1}{x} d x=\left.\ln x \frac{x^{2}}{2}\right|_{1} ^{e}-\int_{1}^{e} \frac{x}{2} d x \\
& \int_{1}^{e} x \ln x d x=\ln (e) \frac{e^{2}}{2}-\ln (1) \frac{1^{2}}{2}-\left.\frac{1}{2} \frac{x^{2}}{2}\right|_{1} ^{e}=\ln (e) \frac{e^{2}}{2}-\frac{1}{4}\left(e^{2}-1\right) \\
& \int_{1}^{e} x \ln x d x=\frac{e^{2}}{4}+\frac{1}{4}=\frac{e^{2}+1}{4}
\end{aligned}
$$

Example 1.4. Repeated use of integration by parts. Evaluate the following integral:

$$
\int x^{2} e^{x} d x
$$

From the ILATE rule, we can choose $u=x^{2}$ and $d v=e^{x} d x$ Hence, we have:

$$
\begin{array}{ccc}
\text { Functions in original integral } & u=x^{2} & d v=e^{x} d x \\
\text { Functions in new integral } & d u=2 x d x & v=e^{x} \\
\int x^{2} e^{x} d x=x^{2} e^{x}-\int e^{x} 2 x d x=x^{2} e^{x}-2 \int x e^{x} d x
\end{array}
$$

Here we have to apply again the Integration by Parts on $\int x e^{x} d x$. Therefore, we choose again u and $d v$.

$$
\begin{array}{ccc}
\text { Functions in original integral } & u=x & d v=e^{x} d x \\
\text { Functions in new integral } & d u=d x & v=e^{x}
\end{array}
$$

Finally, we have:

$$
\int x^{2} e^{x} d x=x^{2} e^{x}-2\left(x e^{x}-\int e^{x} d x\right)=x^{2} e^{x}-2\left[(x-1) e^{x}\right]+c
$$

So for $\int x^{n} e^{x} d x$, where n is a positive integer, we apply the IBP n-times. Hence,

$$
\int x^{n} e^{x} d x=x^{n} e^{x}-n \int x^{n-1} e^{x} d x
$$

