Homework week 3 solutions

Daniel Rakotonirina

January 25, 2017

Lagrange Multipliers

0.1 Gradient

Definition 1. Gradient. Let f be differentiable at (x, y). The gradient of $f(x, y)$ is denoted by $\nabla f(x, y)$ and defined by:

$$
\nabla f(x, y)=\left\langle\frac{\partial f}{\partial x}(x, y), \frac{\partial f}{\partial y}(x, y)\right\rangle
$$

It can be noticed that $\nabla f(x, y)$ is a vector. The symbol ∇ is called nabla.
Example 0.1. Find the gradient of $f(x, y)=x y$.
Let's find the first derivatives:

$$
f_{x}(x, y)=y ; \quad f_{y}(x, y)=x
$$

So, $\nabla f(x, y)=\langle y, x\rangle$
Example 0.2. Find the gradient of $f(x, y)=x^{2}+2 x y+3 y^{2}$.
Let's find the first derivatives:

$$
f_{x}(x, y)=2 x+y ; \quad f_{y}(x, y)=2 x+6 y
$$

So, $\nabla f(x, y)=\langle 2 x+y, 2 x+6 y\rangle$
Example 0.3. Find the gradient of $f(x, y)=\ln (x y)$.
Let's find the first derivatives using $(\ln u)^{\prime}=\frac{u^{\prime}}{u}$

$$
f_{x}(x, y)=\frac{y}{x y}=\frac{1}{x} ; \quad f_{y}(x, y)=\frac{x}{x y}=\frac{1}{y}
$$

So, $\nabla f(x, y)=\left\langle\frac{1}{x}, \frac{1}{y}\right\rangle$
Example 0.4. Find the gradient of $f(x, y)=x^{2} y e^{x y}$.
Let's find the first derivatives using $(u \cdot v)^{\prime}=u^{\prime} \cdot v+u \cdot v^{\prime}$

$$
\begin{gathered}
f_{x}(x, y)=\frac{\partial\left(x^{2} y\right)}{\partial x} \cdot e^{x y}+x^{2} y \cdot \frac{\partial\left(e^{x y}\right)}{\partial x}=2 x y e^{x y}+x^{2} y^{2} e^{x y}=\left(2 x y+x^{2} y^{2}\right) e^{x y} \\
f_{y}(x, y)=\frac{\partial\left(x^{2} y\right)}{\partial y} \cdot e^{x y}+x^{2} y \cdot \frac{\partial\left(e^{x y}\right)}{\partial y}=x^{2} e^{x y}+x^{3} y e^{x y}=\left(x^{2}+x^{3} y\right) e^{x y}
\end{gathered}
$$

So, $\nabla f(x, y)=\left\langle\left(2 x y+x^{2} y^{2}\right) e^{x y},\left(x^{2}+x^{3} y\right) e^{x y}\right\rangle$

0.2 Lagrange Multipliers

In the previous section we optimized (i.e. found the absolute extrema) a function on a region that contained its boundary. In this section we are going to take a look at another way of optimizing a function subject to given constraint(s).

Definition 2. Objective function. It is the function $f(x, y)$ that we wish to optimize.
Definition 3. Constraint. It is a curve \mathcal{C} in the $x y$-plane on which we wish to find the min/max of the function $f(x, y)$. It is defined by $g(x, y)=0$.

Method

Let $f(x, y)$ be the objective function and $g(x, y)$ the constraint with $\nabla g(x, y) \neq 0$ on the curve $g(x, y)=0$. The following steps give the min $/ \max$ of the function $f(x, y)$ subjected to the constraint $g(x, y)=0$:

1. Find the values of x, y and λ that satisfy the following system of 2 equations:

$$
\begin{array}{r}
\nabla f(x, y)=\lambda \nabla g(x, y) \\
g(x, y)=0
\end{array}
$$

λ is called Lagrange Multiplier.
2. From Step 1, the largest (resp. smallest) value gives the maximum (resp. minimum) of the function $f(x, y)$ at the point (x, y) subjected to the constraint $g(x, y)=0$.

Example 0.5. Use the Lagrange Multipliers to find the minimum and maximum values of $f(x, y)=x^{2}+y^{2}-$ $2 x+2 y+5$ on the curve $\mathcal{C}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=4\right\}$.

Solution: Here $g(x, y)=x^{2}+y^{2}-4$. On the curve \mathcal{C} the value of f is decreasing after the point P. The point P can be characterised by the point where the gradients of f and g are parallel (orthogonal). It is where the value of f on the curve \mathcal{C} is the maximum.
Method:

1. Find the value of x, y and λ such that

$$
\begin{array}{r}
\nabla f(x, y)=\lambda \nabla g(x, y) \\
g(x, y)=0
\end{array}
$$

2. From step 1 chose the set of (x, y, λ) that gives the largest and the smallest value of $f(x, y)$

Here we have:

$$
\begin{array}{r}
\nabla f=\langle 2 x-2,2 y+2\rangle \\
\nabla g=\langle 2 x, 2 y\rangle
\end{array}
$$

We now have the system of two equations as follows:

$$
\begin{aligned}
& 2 x-2=\lambda 2 x \\
& 2 y+2=\lambda 2 y
\end{aligned}
$$

After simplification, we have:

$$
\begin{align*}
& x-1=\lambda x \tag{1}\\
& y+1=\lambda y \tag{2}
\end{align*}
$$

Here we will try to eliminate λ. From Eq. (1) and Eq. (2), we can write:

$$
\begin{aligned}
& \lambda=\frac{x-1}{x} \\
& \lambda=\frac{y+1}{y}
\end{aligned}
$$

This gives us $\frac{x-1}{x}=\frac{y+1}{y} \Longrightarrow x y+x=x y-y \Longrightarrow x=-y$. Since $g(x, y)=x^{2}+y^{2}-4=0$, we have $x^{2}+(-x)^{2}=4 \Longrightarrow x=\sqrt{2} \Longrightarrow y=-\sqrt{2} \quad$ or $\quad x=-\sqrt{2} \Longrightarrow y=\sqrt{2}$

So we have $f(\sqrt{2},-\sqrt{2})=9-4 \sqrt{2}$ and $f(-\sqrt{2}, \sqrt{2})=9+4 \sqrt{2}$

Example 0.6. Use the Lagrange Multipliers to find the minimum and maximum values of $f(x, y)=2 x^{2}+y^{2}+2$ on the curve $\mathcal{C}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+4 y^{2}=4\right\}$.

Here \mathcal{C} is an ellipse: $g(x, y)=\frac{x^{2}}{4}+y^{2}-1=0 . \nabla f=\lambda \nabla g$ with $g(x, y)=0$ give:

$$
\begin{array}{r}
2 x=\lambda x \\
y=4 \lambda y \\
x^{2}+4 y^{2}-4=0 \tag{5}
\end{array}
$$

Then from Eq. (3) and Eq. (4) we have:

$$
\begin{align*}
x(\lambda-2) & =0 \tag{6}\\
y(4 \lambda-1) & =0 \tag{7}
\end{align*}
$$

EQ. (6) gives $x=0$ or $\lambda=2$.
If $\lambda=2$, we have (from EQ. (6)): $y(8-1)=0 \Longrightarrow y=0$. So EQ. (5) gives: $x^{2}=4 \Longrightarrow x= \pm 2$. We have two critical points $(2,0)$ and $(-2,0)$.
If $x=0$, then from EQ. (5), we have $y^{2}=1 \Longrightarrow y= \pm 1$. So we have two critical points $(0,-1)$ and $(0,-1)$.

Now we have to compute the value of $f(x, y)$ at these critical points. We have:

$$
\begin{array}{r}
f(2,0)=10 \\
f(-2,0)=10 \\
f(0,1)=3 \\
f(0,-1)=3
\end{array}
$$

