Integral Calculus

Daniel Rakotonirina

January 19, 2017

Minimum/Maximum Problems (sec. 12.8)

A function $f(x, y)$ has a local maximum value at a point (a, b) if $f(x, y) \leqslant f(a, b)$ for all points (x, y) in some open disk centered at data point.

A function $f(x, y)$ has a local minimum value at a point (a, b) if $f(x, y) \geqslant f(a, b)$ for all points (x, y) in some open disk centered at data point.

These points are also called local extreme values or local extrema.
Theorem 1. If a function $f(x, y)$ has a local minimum (or a minimum) value at (a, b) and the partial derivatives $f_{x}\left(\frac{\partial f}{\partial x}\right)$ and $f_{y}\left(\frac{\partial f}{\partial y}\right)$ exist $(\operatorname{not} \infty)$ at (a, b), then $f_{x}(a, b)=f_{y}(a, b)=0$.

Definition 1. An interior point (a, b) in D_{f} is a critical point of the function $f(x, y)$ if either:

- $f_{x}(a, b)=f_{y}(a, b)=0$
- at least one of f_{x} and f_{y} does not exist at (a, b)

Strategy

1. Find the first derivative f_{x} and f_{y}
2. Find the point (a, b) for which $f_{x}(x, y)=f_{y}(x, y)=0$

Example 0.1. $f(x, y)=5 x y(x-4)(y+6)=5\left(y^{2}+6 y\right)\left(x^{2}-4 x\right)$. Find critical points.
First, let's compute the first derivative.

$$
\begin{align*}
& f_{x}=5\left(y^{2}+6 y\right)(2 x-4) \tag{1}\\
& f_{y}=5(2 y+6)\left(x^{2}-4 x\right) \tag{2}
\end{align*}
$$

Then we have,

$$
\begin{align*}
& f_{x}=5\left(y^{2}+6 y\right)(2 x-4)=5 y(y+6)(2 x-4)=0 \tag{3}\\
& f_{y}=5(2 y+6)\left(x^{2}-4 x\right)=5 x(2 y+6)(x-4)=0 \tag{4}
\end{align*}
$$

From Eq. (3) we have:

$$
y=0 \text { or } y+6=0 \text { or } 2 x-4=0 \Longrightarrow y=0 \text { or } y=-6 \text { or } x=2
$$

Now, we plug $x=2$ into EQ. (4):

$$
5(2)(2 y+6)(2-4)=0 \Longrightarrow-20(2 y+6)=0 \Longrightarrow y=-3
$$

So, $(2,-3)$ is a critical point.

Then, we plug $y=0$ into EQ. (4):

$$
5 x(2(0)+6)(x-4)=0 \Longrightarrow 30 x(x-4)=0 \Longrightarrow x=0 \text { or } x=4
$$

So $(0,0)$ and $(4,0)$ are critical points.

Finally, we plug $y=-6$ into EQ. (4):

$$
5 x(2(-6)+6)(x-4)=0 \Longrightarrow-30 x(x-4)=0 \Longrightarrow x=0 \text { or } x=4
$$

So $(0,-6)$ and $(4,-6)$ are critical points.

Example 0.2. $f(x, y)=x^{2}+\frac{1}{3} y^{3}+2 x y-3 y$. Find the critical points.
First, let's compute the first derivative.

$$
\begin{array}{r}
f_{x}=2 x+0+2 y+0=2 x+2 y \\
f_{y}=0+y^{2}+2 x-3=y^{2}+2 x-3 \tag{6}
\end{array}
$$

Then, we have:

$$
\begin{array}{r}
f_{x}=2 x+2 y=0 \\
f_{y}=y^{2}+2 x-3=0 \tag{8}
\end{array}
$$

First, from EQ. (7), we have $x=-y$. Then we have to plug it into EQ. (8) to get:

$$
y^{2}+2(-y)-3=0 \Longrightarrow y^{2}-2 y-3=0
$$

Now we have a quadratic equation. So the roots are expressed as:

$$
\begin{array}{r}
y=\frac{2 \pm \sqrt{(-2)^{2}-4(-3)(1)}}{2}=\frac{2 \pm \sqrt{16}}{2}=\frac{2 \pm 4}{2} \\
y=\frac{6}{2}=3 \quad \text { and } \quad y=-1
\end{array}
$$

Since $x=-y$, if $y=-1$ then $x=1$ and if $y=3$ then $x=-3$.
So $(1,-1)$ and $(-3,3)$ are critical points.

0.1 Saddle Point

Definition 2. A function $f(x, y)$ has a saddle point at a critical point (a, b) if, in every open disk centered at (a, b), there are points (x, y) for which $f(x, y)>f(a, b)$ and points for which $f(x, y)<f(a, b)$. It means that if (a, b) is a critical point of f and f has a saddle point at (a, b), they form the point $(a, b, f(a, b))$. It is possible to walk uphill in some directions and downhill in other directions.

Example 0.3. The hyperbolic paraboloid $f(x, y)=x^{2}-y^{2}$ has a saddle point at $(0,0)$

0.2 Analysing critical points

Theorem 2. Second Derivative Test. Suppose that the second partial derivatives of f are continuous throughout an open disk centered at the point (a, b), where $f_{x}(a, b)=f_{y}(a, b)=0$.
Let $D(x, y)=f_{x x}(x, y) f_{y y}(x, y)-\left(f_{x y}(x, y)\right)^{2}$.

1. If $D(a, b)>0$ and $f_{x x}(a, b)<0$, then f has a local maximum value at (a, b)
2. If $D(a, b)>0$ and $f_{x x}(a, b)>0$, then f has a local minimum value at (a, b)
3. If $D(a, b)<0$, then f has a saddle point at (a, b)
4. If $D(a, b)=0$, then the test is inconclusive

Related Exercises sec. 12.8 19-34
Example 0.4. Analysing critical points. Use the Second Derivative Test to classify the critical points of $f(x, y)=x y(x-2)(y+3)$. First, we compute the first partial derivatives.

$$
\begin{array}{r}
f_{x}=\frac{\partial}{\partial x}[x y(x-2)] \cdot(y+3)+x y(x-2) \cdot \frac{\partial}{\partial x}(y+3) \\
f_{x}=\left[\frac{\partial}{\partial x}(x y) \cdot(x-2)+x y \frac{\partial}{\partial x}(x-2)\right](y+3) \\
f_{x}=[y(x-2)+x y](y+3) \\
f_{x}=2 y(x-1)(y+3) \\
f_{y}=\frac{\partial}{\partial y}[x y(x-2)] \cdot(y+3)+x y(x-2) \cdot \frac{\partial}{\partial y}(y+3) \\
f_{y}=\left[\frac{\partial}{\partial y}(x y) \cdot(x-2)+x y \frac{\partial}{\partial y}(x-2)\right] \cdot(y+3)+x y(x-2) \\
f_{y}=x(x-2)(y+3)+x y(x-2) \\
f_{y}=(x-2)[x(y+3)+x y] \\
f_{y}=(x-2)(2 x y+3 x) \\
f_{y}=x(x-2)(2 y+3)
\end{array}
$$

And we find the points corresponding to $f_{x}=0$ and $f_{y}=0$.

$$
\begin{align*}
& f_{x}=2 y(x-1)(y+3)=0 \tag{9}\\
& f_{y}=x(x-2)(2 y+3)=0 \tag{10}
\end{align*}
$$

We have $y=0$ or $x=1$ or $y=-3$. We consider each of these cases.

- Substituting $y=0$, EQ. (10) gives the equation $3 x(x-2)=0$, which has solutions $x=0$ and $x=2$. So $(0,0)$ and $(2,0)$ are critical points.
- Substituting $x=1$, Eq. (10) gives the equation $-(2 y+3)=0$, which has solutions $y=-3 / 2$. So $(1,-3 / 2)$ is a critical point.
- Substituting $y=-3$, Eq. (10) gives the equation $-3 x(x-2)=0$, which has roots $x=0$ and $x=2$. So $(0,-3)$ and $(2,-3)$ are critical points.

We just found that we have 5 critical points: $(0,0),(2,0),(1,-3 / 2),(0,-3)$ and $(2,-3)$. Now we should calculate $D(x, y)$ but before that we need to find the second partial derivatives which are:

$$
f_{x x}=2 y(y+3) ; \quad f_{x y}=2(2 y+3)(x-1) ; \quad f_{y y}=2 x(x-2)
$$

Points	$f_{x x}$	$f_{y y}$	$\left(f_{x y}\right)^{2}$	$D(x, y)$	Conclusion
$(0,0)$	0	0	36	-36	Saddle point
$(2,0)$	0	0	36	-36	Saddle point
$(1,-3 / 2)$	$-9 / 2$	2	0	9	Local maximum
$(0,-3)$	0	0	36	-36	Saddle point
$(2,-3)$	0	0	36	-36	Saddle point

0.3 Optimisation

Example 0.5. Shipping regulations. A shipping company handles rectangular boxes provided the sum of the length, width and height of the box does not exceed 96 . Find the dimension of the box that meets this condition and has the largest volume.
Solution. Let x, y, z be the dimensions of the box and $V=x y z$ it volume. The box maximum volume satisfies the $x+y+z=96$, which is used to eliminate any one of the variables from the volume function. Noting that $z=96-x-y$, the volume function becomes:

$$
V(x, y)=x y(96-x-y)
$$

Notice that dimensions are non-negative!!! So we have the condition:

$$
96-x-y \geqslant 0 \quad \Longrightarrow \quad x+y \leqslant 96
$$

The solution is met if (x, y) lies in the triangle bounded by $x=0, y=0$ and $x+y=96$. Here the domain is the triangle and $V=0$ on its boundary.
The goal is to find the critical points of V that satisfy:

$$
\begin{align*}
& V_{x}=96 y-2 x y-y^{2}=y(96-2 x-y)=0 \tag{11}\\
& V_{y}=96 x-2 x y-x^{2}=x(96-2 y-x)=0 \tag{12}
\end{align*}
$$

EQ. (11) gives $y=0$ or $y=96-2 x$. When we plug these values into EQ. (12), we have:

$$
\begin{array}{rc}
y=0 \Longrightarrow & x=96-2(0)=96 \\
y=96-2 x \Longrightarrow & x=96-2(96-2 x) \Longrightarrow x=32, \quad \text { so } y=96-2(32)=32
\end{array}
$$

So $(96,0)$ and $(32,32)$ are critical points.
EQ. (12) gives $x=0$ or $x=96-2 y$. When we plug these values into EQ. (11), we have:

$$
\begin{aligned}
& x=0 \Longrightarrow y=0 \\
& x=96-2 y \Longrightarrow y=96-2(96-2 y) \Longrightarrow y=32, \quad \text { so } x=96-2(32)=32
\end{aligned}
$$

So $(0,0)$ and $(0,96)$ are critical points.
In summary, we have 4 critical points $(0,0),(0,96),(96,0)$ and $(32,32)$. We can see that the first 3 solutions lie on the boundary of the domain, where $V=0$. Therefore, the remaining critical point is $(32,32)$.
Now, we apply the Second Derivative Test to check the type of critical point at $(32,32)$.

$$
\begin{array}{r}
D(x, y)=V_{x x}(x, y) V_{y y}(x, y)-\left(V_{x y}(x, y)\right)^{2} \\
\text { where } V_{x x}=-2 y ; \quad V_{x y}=96-2 x-2 y ; \quad V_{y y}=-2 y \\
\text { So } \quad D(x, y)=4 x y-(96-2 x-2 y)^{2}
\end{array}
$$

Substituting the value of (x, y) by $(32,32)$, we have $D(32,32)=3072>0$.
Since $V_{x x}(32,32)=-2(32)=-64<0$, we have a local maximum at $(32,32)$. The dimensions of the box with maximum volume are $x=32, y=32$ and $z=96-32-32=32$ (it's a cube). Its volume is $32 \times 32 \times 32=32,768$ which is the maximum volume of the domain.

