Integral Calculus

Daniel Rakotonirina

January 14, 2017

Derivative with two variables (sec. 12.4)

0.1 Recall on derivative with one variable

The derivative of a function $y=f(x)$ of a variable x is a measure of the rate at which the value y of the function changes with respect to the change of the variable x. For example, the derivative of the position of a moving object with respect to time is the object's velocity: this measures how quickly the position of the object changes when time is advanced.

The derivative of a function of one variable $y=f(x)$ is defined by:

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Notation: $\left.\frac{d f}{d x}\right|_{a}=f^{\prime}(a)$
Example 0.1. $f(x)=x^{3}+\sin (x) \Longrightarrow f^{\prime}(x)=3 x^{2}+\cos (x) \Longrightarrow f^{\prime}(0)=3(0)^{2}+\cos (0)=1$

0.2 Partial Derivatives

The partial derivative of f with respect to x at the point (a, b) is:

$$
f_{x}(a, b)=\lim _{h \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{h}
$$

The partial derivative of f with respect to y at the point (a, b) is:

$$
f_{y}(a, b)=\lim _{h \rightarrow 0} \frac{f(a, b+h)-f(a, b)}{h}
$$

Provided these limits exist.

Example 0.2. Example with limit definition. Define $f(x, y)$ by

$$
f(x, y)=2 x^{2}-3 y^{2}-2
$$

If we want to calculate the partial derivative of $f(x, y)$ at any point (x, y), we just have to plug that in the above definition.

$$
f_{x}(x, y)=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}
$$

First, let's compute $f(x+h, y)$:

$$
f(x, y)=2(x+h)^{2}-3 y^{2}-2
$$

So,

$$
\begin{aligned}
& f_{x}(x, y)=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}=\lim _{h \rightarrow 0} \frac{2(x+h)^{2}-3 y^{2}-2-\left(2 x^{2}-3 y^{2}-2\right)}{h} \\
& f_{x}(x, y)=\lim _{h \rightarrow 0} \frac{2\left(x^{2}+2 x h+h^{2}\right)-3 y^{2}-2-\left(2 x^{2}-3 y^{2}-2\right)}{h} \\
& f_{x}(x, y)=\lim _{h \rightarrow 0} \frac{2 x^{2}+4 x h+2 h^{2}-3 y^{2}-2-2 x^{2}+3 y^{2}+2}{h} \\
& f_{x}(x, y)=\lim _{h \rightarrow 0} \frac{4 x h+2 h^{2}}{h}=\lim _{h \rightarrow 0} 4 x+2 h \\
& f_{x}(x, y)=4 x
\end{aligned}
$$

Other notation

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(a, b)=\left.\frac{\partial f}{\partial x}\right|_{(a, b)}=f_{x}(a, b)=\partial_{x}(a, b) \\
& \frac{\partial f}{\partial y}(a, b)=\left.\frac{\partial f}{\partial y}\right|_{(a, b)}=f_{y}(a, b)=\partial_{y}(a, b)
\end{aligned}
$$

Meaning

$\frac{\partial f}{\partial x}$: derivative of f with respect to x while y is considered as a constant.
$\frac{\partial f}{\partial y}$: derivative of f with respect to y while x is considered as a constant.
Example 0.3. Compute the partial derivative in each case for $f(x, y)=\sqrt{x+y^{2}}$.

$$
\begin{array}{r}
f_{x}(x, y)=\frac{\partial_{x}\left(x+y^{2}\right)}{2 \sqrt{x+y^{2}}}=\frac{1}{2 \sqrt{x+y^{2}}} \\
f_{y}(x, y)=\frac{\partial_{y}\left(x+y^{2}\right)}{2 \sqrt{x+y^{2}}}=\frac{2 y}{2 \sqrt{x+y^{2}}}=\frac{y}{\sqrt{x+y^{2}}}
\end{array}
$$

Example 0.4. Compute the partial derivative in each case for $f(x, y)=x^{2} y^{3}$.

$$
f_{x}(x, y)=2 x y^{3} ; \quad f_{y}(x, y)=3 x^{2} y^{2}
$$

Example 0.5. Compute the partial derivative in each case for $f(x, y)=x^{2} e^{x y}$.
This is a composition of 2 functions of the following form: $f(x, y)=u \cdot v$. Remember $(u \cdot v)^{\prime}=u^{\prime} \cdot v+u \cdot v^{\prime}$. Here $u=x^{2}$ and $v=e^{x y}$.

$$
\begin{array}{r}
f_{x}(x, y)=\partial_{x}\left(x^{2}\right) \cdot e^{x y}+x^{2} \cdot \partial_{x}\left(e^{x y}\right)=2 x \cdot e^{x y}+x^{2} \cdot y e^{x y} \\
f_{y}(x, y)=\partial_{y}\left(x^{2}\right) \cdot e^{x y}+x^{2} \cdot \partial_{y}\left(e^{x y}\right)=0 \cdot e^{x y}+x^{2} \cdot x e^{x y}=x^{3} e^{x y}
\end{array}
$$

Example 0.6. Compute the partial derivative in each case for $f(x, y)=2 x+y^{3}$.

$$
f_{x}(x, y)=2 ; \quad f_{y}(x, y)=3 y^{2}
$$

Example 0.7. Compute the partial derivative in each case for $f(x, y)=\sqrt{x}+\ln \left(x^{2}+y^{2}\right)$.
This is a composition of 2 functions of the following form: $f(x, y)=u \cdot v$ where $(u \cdot v)^{\prime}=u^{\prime} \cdot v+u \cdot v^{\prime}$. Here $u=\sqrt{x}$ and $v=\ln \left(x^{2}+y^{2}\right) . \operatorname{Rm}:(\ln w)^{\prime}=\frac{w^{\prime}}{w}$
$f_{x}(x, y)=\partial_{x}(\sqrt{x}) \cdot \ln \left(x^{2}+y^{2}\right)+\sqrt{x} \cdot \partial_{x}\left[\ln \left(x^{2}+y^{2}\right)\right]=\frac{1}{2 \sqrt{x}} \ln \left(x^{2}+y^{2}\right)+\sqrt{x} \frac{\partial_{x}\left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}=\frac{\ln \left(x^{2}+y^{2}\right)}{2 \sqrt{x}}+\frac{2 x \sqrt{x}}{x^{2}+y^{2}}$

$$
f_{y}(x, y)=\partial_{y}(\sqrt{x}) \cdot \ln \left(x^{2}+y^{2}\right)+\sqrt{x} \cdot \partial_{y}\left[\ln \left(x^{2}+y^{2}\right)\right]=0 \cdot \ln \left(x^{2}+y^{2}\right)+\sqrt{x} \frac{\partial_{y}\left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}=\frac{2 y \sqrt{x}}{x^{2}+y^{2}}
$$

0.3 High-Order Partial Derivative

A second order partial derivative is just the partial derivative of the first order partial derivative.

- The partial derivative of $f_{x}(x, y)$ with respect to x is: $f_{x x}(x, y)=\left(f_{x}\right)_{x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}}$
- The partial derivative of $f_{x}(x, y)$ with respect to y is: $f_{x y}(x, y)=\left(f_{x}\right)_{y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x}$
- The partial derivative of $f_{y}(x, y)$ with respect to x is: $f_{y x}(x, y)=\left(f_{y}\right)_{x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial x \partial y}$
- The partial derivative of $f_{y}(x, y)$ with respect to y is: $f_{y y}(x, y)=\left(f_{y}\right)_{y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y^{2}}$

Example 0.8. $f(x, y)=x^{4} y-3 x y^{2}$. Find the first partial derivatives and the second partial derivatives.
First order:

$$
f_{x}=4 x^{3}-3 y^{2} ; \quad f_{y}=x^{4}-6 x y
$$

Second order:

$$
\begin{aligned}
f_{x x} & =12 x^{2} ; \quad f_{x y}=4 x^{3}-6 y \\
f_{y x} & =4 x^{3}-6 y ; \quad f_{y y}=-6 x
\end{aligned}
$$

$\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}$. Is this always true?
Theorem 1. Equality of Mixed Partial Derivatives. Assume that f is defined on an open set \mathcal{D} of \mathbb{R}^{2}, and that $f_{x y}$ and $f_{y x}$ are continuous throughout \mathcal{D}. Then $f_{x y}=f_{y x}$ at all points of \mathcal{D}

Example 0.9. Given the following function:

$$
f(x, y)= \begin{cases}x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Verify the equality of the mixed partial derivatives at $(0,0)$.
Solution: for $(x, y) \neq 0$, we have:

$$
f(x, y)=\frac{x^{3} y-x y^{3}}{x^{2}+y^{2}}
$$

First, let's compute the first derivatives:

$$
f_{x}(x, y)=\frac{\left(3 x^{2} y-y^{3}\right)\left(x^{2}+y^{2}\right)-\left(x^{3} y-x y^{3}\right) 2 x}{\left(x^{2}+y^{2}\right)^{2}}
$$

Taking $x=0$ and for $y \neq 0$, we have:

$$
f_{x}(0, y)=\frac{-y^{5}}{y^{4}}=-y
$$

From the definition of f we can see that $f(x, 0)=0$ (whether or not $x=0$). But in particular $f_{x}(0,0)=0$.
Hence,

$$
f_{x y}(0,0)=\lim _{y \rightarrow 0} \frac{f_{x}(0, y)-f_{x}(0,0)}{y}=\lim _{y \rightarrow 0} \frac{-y-0}{y}=-1
$$

Similarly for $(x, y) \neq(0,0)$,

$$
f_{y}(x, y)=\frac{\left(x 3-3 x y^{2}\right)\left(x^{2}+y^{2}\right)-\left(x^{3} y-x y^{3}\right) 2 y}{\left(x^{2}+y^{2}\right)^{2}}
$$

Taking $y=0$, we have:

$$
f_{y}(x, 0)=\frac{x^{5}}{x^{4}}=x
$$

Further for $x=0$, we have $f(x, y)=0$ (whether or not $x=0$), so $f_{y}(0, y)=0$ for any y. In particular, $f_{y}(0,0)=0$. Hence,

$$
f_{y x}(0,0)=\lim _{x \rightarrow 0} \frac{f_{y}(x, 0)-f_{y}(0,0)}{x}=\lim _{x \rightarrow 0} \frac{x-0}{x}=1
$$

Example 0.10. Is it possible to have a function $f(x, y)$ defined every where with $f_{x}(x, y)=2 x$ and $f_{y}(x, y)=$ $2 x$?
$f_{x y}=0$ and $f_{y x}=2$. So, it is not possible!!!

Example of application of partial derivatives: The production P of a given factory is described as a function of capital investment K (measured in dollars) and labour L (measured in worker hours). $\frac{\partial P}{\partial K}$ is the variation of the production P with respect to the capital investment K while maintaining the worker hours L constant. Whereas, $\frac{\partial P}{\partial L}$ is the variation of the production P with respect to the worker hours L while maintaining the capital investment K constant.

