Integral Calculus

Daniel Rakotonirina

March 16, 2017

Probability
Probability $$

1. Continuous random variable

Let's start with an example. Suppose that you take a bus to work, and that every 20 minutes a bus arrives at your stop. Because of variation in the time that you leave your home, you don't always arrive at the bus stop at the same time, So your waiting time X for the next bus takes on any value in the interval $[0,20]$. What is the probability (the chance) of your waiting time on any interval $[a, b]$?

$$
=\frac{\text { Length of }[a, b]}{\text { Length of }[0,20]}
$$

our guess (after a bit of thought) would be " $\frac{b-a}{20}$ ".
So,

- The probability of your waiting time on any interval $[a, b]=\frac{b-a}{20}$

Notation:

$$
P(a \leq x \leq b)=\frac{b-a}{20}
$$

- Since your waiting time X is a random event, the variable X is called a random variable.
(2) We now consider the function $f(x)=\frac{1}{20}$ with the domain $[a, 20]$. The probability $P(a \leq x \leq b)$, which is the waiting time on the interval $[a, b]$ is the area under the graph of $y=f(x)=\frac{1}{20}$ between a and b. Therefore, $P(a \leq x \leq b)=$ the red area

$$
=\int_{a}^{b} f(x) d x
$$

So, we get

$$
p(a \leq x \leq b)=\int_{a}^{b} f\left(x, d x=\int_{a}^{b} \frac{1}{20} d x=\left.\frac{x}{20}\right|_{a} ^{b}=\frac{b-a}{20} .\right.
$$

The function $f(x)=\frac{1}{20}, a \leq x \leq b$, (in this example) is called the probability density function (PDF) of the random variable X.

In General, we have the following definitions:
Definition (CDF): function
The cumulative distribution of any random variable X is the function $\quad F(x)=P(X \leq x)$.

Definition (Continuous Random Variable)
A random variable X is a continuous random variable if its cumulative distribution function $P(X \leq x)$ is a Continuous function of x.

Definition (PDF):
Let X be a continuous random variable with CDF $F(x)$. If $F(x)$ is differentiable then $f(x)=\frac{d F(x)}{d x}$ is called with probability density function (often shortened to PDF) of X.

Relation Between CDF and PDF:
$C D F$

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(t) d t
$$

PDF

$$
f(x)=\frac{d F(x)}{d x}
$$

So,
(1) If we have PDF, $f(x)$, to find CDF, we take integral from $-\infty$ to x of $f(x)$.
$f(x)(P D F)$ given $\leadsto F(x)(C D F)=\int_{-\infty}^{x} f(t) d t$
(3)
(2) If we have CDF, $F(x)$, to find $P D F$, we take derivative of $F(x)$ with respect to x.
$F(x)(C D F)$ given $\leadsto f(x)(P D F)=\frac{d F(x)}{d x}$.

Properties of the PDF
Let $f(x)$ be aprobability density function (PDF) of a random variable X. Then,

1. $f(x) \geq 0$ for all x,
2. $\int_{-\infty}^{\infty} f(x) d x=1$,
3. $(C D F) F(x)=P(X \leq x)=\int_{-\infty}^{x} f(t) d t$
4. $P(a \leq x \leq b)=\int_{a}^{b} f(x) d x$.

Note
To verify that a function $f(x)$ is PDF, we have to cheek Propeties $1 \& 2$ (above).

$$
f(x) \geq 0 \forall x \quad \Longleftrightarrow \int_{-\infty}^{\infty} f(x) d x=1
$$

Example 1: Let $f(x)=\left\{\begin{array}{cc}k\left(3 x^{2}+1\right) & \text { if } 0 \leq x \leq 2 \\ 0 & \text { otherwise. }\end{array}\right.$

1. Find the value of k that makes the given function a PDF. We need to check (1) $f(x) \geq 0$ for all x..
(2) $\int_{-\infty}^{+\infty} f(x) d x=1$. For (1), $k\left(3 x^{2}+1\right) \geq 0 \Rightarrow k \geq 0$

For (2): $\quad f_{(x)=0} \quad \begin{aligned} & x>2 \\ & \text { or }\end{aligned}$

$$
\begin{aligned}
1=\int_{-\infty}^{+\infty} f(x) d x & =\int_{0}^{2} k\left(3 x^{2}+1\right) d x=k \int_{0}^{2}\left(3 x^{2}+1\right) d x=k x^{3}+\left.x\right|_{0} ^{2} \\
& =k(8+2-0)=10 k \Rightarrow 10 k=1 \Rightarrow k=\frac{1}{10} \quad \begin{array}{l}
i+\text { is also } \\
\text { satisitise (1) }
\end{array}
\end{aligned}
$$

2. Let X be a continuous random variable whose PDF is $f(x)$. Compute the probability that X is between 1 and 2 .

$$
\begin{aligned}
& p(1 \leq x \leq 2)=? \\
& p(1 \leq x \leq 2)=\int_{1}^{2} \frac{1}{10}\left(3 x^{2}+1\right) d x=\frac{1}{10} \int_{1}^{2}\left(3 x^{2}+1\right) d x \\
& =\frac{1}{10} x^{3}+\left.x\right|_{1} ^{2}=\frac{1}{10}((8+2)-(1+1))=\frac{1}{10}(10-2)=\frac{8}{10}=\frac{4}{5}
\end{aligned}
$$

Note that $f(x)= \begin{cases}\frac{1}{10}\left(3 x^{2}+1\right) & \text { if } 0 \leq x \leq 2 \\ \text { we find } k \text { in } 0 & \text { otherwise }\end{cases}$
we find k in part (1)!
(4)
3. Find the cumulative distribution function of X.
(I) When x is on $(-\infty, 0)$, we have $f(x)=0$ for $x \in(-\infty, 0)$. SO,

$$
F(x)=\int_{-\infty}^{x} f(t) d t=\int_{-\infty}^{x} 0 d t=1
$$

\qquad
(II) when x is on $[0,2]$: we have $f(x)=0$ for $x \in(-\infty, 0)$ and $f(x)=$ $\frac{1}{10}\left(3 x^{2}+1\right)$ for $x \in[0,2] . S 0, F(x)=\int_{-\infty}^{x} f(t) d t=\int_{-\infty}^{0} f\left(+1 d t+\int_{0}^{x} f+1 d t\right.$

$$
=\int_{-\infty}^{0} 0 d t+\int_{0}^{x} \frac{1}{10}\left(3 t^{2}+1\right) d t=\frac{1}{10} t^{3}+\left.t\right|_{0} ^{x^{-\infty}}=\frac{x^{3}+x}{10} \cdot \frac{x_{2}}{2}
$$

(II) When x is on $(2, \infty)$: we have $f(x)=0$ for $x \in(-\infty, 0) . f(x)=$ $\frac{1}{10}\left(3 x^{2}+1\right)$ for $x \in[a, 2]$, and $f(x)=0$ for $x \in(2, \infty)$. Thus,

$$
F(x)=\int_{-\infty}^{x} f(t) d t=\int_{-\infty}^{0} f(t) d t+\int_{0}^{1} f^{3 \pi}(t) d t+\int_{1}^{\frac{1}{10}\left(3 x^{2}+1\right)} f(t) d t=\int_{0}^{1} \frac{1}{1}\left(3 x^{2}+1\right) d x=1
$$

$$
\begin{aligned}
& \frac{1}{10}\left(3 x^{2}+1\right) d x=\frac{1}{1}, \\
& F(x)=\left\{\begin{array}{cc}
0, & x<0 \\
\frac{x^{3}+x}{10}, & 0 \leq x \leq 2 \\
1, & x>2
\end{array}\right.
\end{aligned}
$$

Remark 1: For a continuous random variable X, then the $C D F$ $F(x)$ is continuous, but the PDF $f(x)$ maybe not be continuous.
Remark 2:
Not all continuous random variables have $P D F_{S}$.

Example 2. let $f(x)= \begin{cases}k\left(x-x^{2}\right) & \text { if } 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}$
(1) Determine K so that f is a probability density function.

We should cheek (1) $f(x) \geq 0$ for all x (2) $\int_{-\infty}^{+\infty} f(x) d x=1$.
(1) Since $x-x^{2}$ on [971] is always positive, we need $k \geq 0$.

$$
k\left(x-x^{2} \geq 0 \Rightarrow k \geq 0\right.
$$

$$
\begin{aligned}
& \text { (2) } \int_{-\infty}^{+\infty} f(x) d x=\int_{0}^{1} k\left(x-x^{2}\right) d x=k \int_{0}^{1} x-x^{2} d x=k \frac{x^{2}}{2}-\frac{x^{3}}{3}| | \\
& =k\left(\left(\frac{1}{2}-\frac{1}{3}\right)-\left(\frac{0}{2}-\frac{0}{3}\right)\right)=k\left(\frac{1}{6}\right), \text { so, } \int_{-\infty}^{+\infty} f(x) d x=k\left(\frac{1}{6}\right)=1 \Rightarrow k=6
\end{aligned}
$$

(2) $P\left(0 \leq x \leq \frac{1}{2}\right)=$?

Note:

$$
f(x)=\left\{\begin{array}{cc}
6\left(x-x^{2}\right) & 0 \leq x \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

$$
\begin{aligned}
p(0 & \left.\leq x \leq \frac{1}{2}\right)=\int_{0}^{1 / 2} 6\left(x-x^{2}\right) d x \\
& =6 \int_{0}^{1 / 2}\left(x-x^{2}\right) d x=6 \frac{x^{2}}{2}-\left.\frac{x^{3}}{3}\right|_{0} ^{1 / 2} \\
& =6\left(\left(\frac{1 / 2)^{2}}{2}-\frac{\left(\frac{1}{2}\right)^{3}}{3}\right)-0\right)=\frac{1}{2}
\end{aligned}
$$

(3) Find th CDF of x.
II) if $x \in \underline{\underline{(-\infty, 0)}}$: in this case $f(x)=0$.So, $F(x)=\int_{-\infty}^{x} f\left(+1 d t=\int_{-\infty}^{x} 0 d t=0\right.$
(II) if $x \in[0,1]$: in this case $f(x)=0$ for $x \in(-\infty, \infty)$ and $f(x)=6\left(x-x^{2}\right)$ for $x \in[0,1]$.

So, $F(x)=\int_{-\infty}^{x} f(t) d t=\int_{-\infty}^{0} f(t) d t+\int_{0}^{x} f(t) d t=0+\int_{0}^{x} 6\left(t-t^{2}\right) d t$ $=0+3 t^{2}-\left.2 t^{3}\right|_{0} ^{x}=3 x^{2}-2 x^{3}$
(III) if $x \in(1, \infty): \rightsquigarrow F(x)=\int_{-\infty}^{x} f(t i d t$ us split off into 3

$$
F(x)=\int_{-\infty}^{0} f\left(+1 d t+\int_{0}^{1} f(t) d t+\int_{1}^{\infty} f\left(t-t^{2}\right)=L_{0}^{\infty} f(t) d t=\int_{0}^{1} 6\left(t-t^{2}\right) d t=11 \left\lvert\, F(x)=\left\{\begin{array}{cc}
0 \\
3 x^{2}-2 x^{3}, & 0 \leq x \leq 1 \\
1, & x
\end{array}\right.\right.\right.
$$

(5) Example 3. Let $f(x)=\left\{\begin{array}{lr}k e^{-0.15(x-0.5)} & x \geq 0.5 \\ 0 & \text { otherwise }\end{array}\right.$

Determine k so that f is a PDF. checking (1) $f(x) \geq 0$ for all $x . k e^{-0.15(x-0.5)}$

$$
\begin{aligned}
& \text { (2) } \int_{-\infty}^{+\infty} f(x) d x=1 \Rightarrow 1=\int_{0.5}^{\infty} k e^{-0.15(x-0.5)} d x \\
& =k \quad \geq 0 \Rightarrow k \geq 0 \quad \begin{array}{l}
\text { since } \\
\text { exponential } \\
\text { unction } \\
\text { is always } \\
\text { positive }
\end{array} \text { (} \quad 0.075 \mathrm{~b} \\
& \text { exponential } \\
& \text { is always } \\
& \text { positive } \\
& =\frac{k e^{0.075}}{-0.15} \lim _{b \rightarrow \infty}\left[\frac{1 / 7_{b}^{0}}{e^{0.15 b}}-\frac{1}{\left.e^{0.15\left(\frac{1}{2}\right)}\right]=\frac{k e^{0.075}}{0.15 e^{0.075}} \rightarrow k=0.15}\right.
\end{aligned}
$$

Example 4 : Let

$$
f(x)=\left\{\begin{array}{lr}
0 & x<-1 \\
1+x & -1 \leq x \leq 0 \\
k(1-x) & 0<x \leq 1 \\
0 & x>1
\end{array}\right.
$$

(1) Determine k so that f is a PDF.

$$
\begin{aligned}
& 1=\int_{-\infty}^{\infty} f(x) d x=\int_{-1}^{0}(1+x) d x+\int_{0}^{1} k(1-x) d x\left[\begin{array}{l}
\text { vote that } f(x)=0 \text { on } \\
x \in(-\infty,-1) \text { and } f(x)=0 \text { an } \\
x \in(1, \infty)
\end{array}\right. \\
& =x+\left.\frac{x^{2}}{2}\right|_{-1} ^{0}+\left.k\left(x-\frac{x^{2}}{2}\right)\right|_{0} ^{1}=\left(0-\left(-1+\frac{1}{2}\right)\right)+k\left(\left(1-\frac{1}{2}\right)-0\right) \\
& =\frac{1}{2}+k\left(\frac{1}{2}\right) \Rightarrow \frac{k}{2}+\frac{1}{2}=1 \Rightarrow \frac{k}{2}=\frac{1}{2} \rightarrow k=1 .
\end{aligned}
$$

so, choosing $K=1$, we have $f(x) \geq 0$ for all x and also

$$
\int_{-\infty}^{\infty} f(x) d x=1 .
$$

(2) Find the CDF of x.
(I) $x \in(-\infty,-1): f(x)=0 \rightarrow F(x)=\int_{-\infty}^{x} f(t) d t=\int_{-\infty}^{x} 0 d t=0$
(I) $x \in[-1,0]:$ f $(x)=0$ for $x \in(-\infty,-1)$ and $f(x)=1+x \quad x \in[-1,0)$.

$$
\begin{aligned}
\leadsto F(x) & =\int_{-\infty}^{x} f\left(+1 d t=\int_{-\infty}^{-1} f\left(+1 d t+\int_{-1}^{x} f+1 d t=0+\int_{-1}^{x}(1+t) d t\right.\right. \\
& =t+\left.\frac{t^{2}}{2}\right|_{-1} ^{x}=\left(x+\frac{x^{2}}{2}\right)-\left(-1+\frac{(-1)^{2}}{2}\right)=x+\frac{x^{2}}{2}+\frac{1}{2}
\end{aligned}
$$

III) $x \in(0,1]: \leadsto F(x)=\int_{-\infty}^{-1} f\left(+1 d t+\int_{-1}^{0} f\left(+i d t+\int_{0}^{x} f(t) d t\right.\right.$

$$
\begin{aligned}
& =\int_{-\infty}^{-1} 0 d t+\int_{-1}^{0}(1+t) d t+\int_{0}^{x}(1-t) d t=0+\left.\left(t+\frac{t^{2}}{2}\right)\right|_{-1} ^{0}+ \\
& t-\left.\frac{t^{2}}{2}\right|_{0} ^{x}=0+\left(0-\left(-1+\frac{(-1)^{2}}{2}\right)\right)+\left(\left(x-\frac{x^{2}}{2}\right)-0\right)=-\frac{x^{2}}{2}+x+\frac{1}{2} \\
& \text { IV) } x \in(1, \infty): \cdots F(x)=x^{x} f(t) d t=x^{-1}
\end{aligned}
$$

(IV) $x \in(1, \infty): \cdots F(x)=\int_{-\infty}^{x} f(t) d t=\int_{-\infty}^{-t} f(t) d t$
$+\int_{0}^{1}(1-t) d t+\theta=t+\left.\frac{t^{2}}{2}\right|_{-1} ^{0}+t-\left.\frac{t^{2}}{2}\right|_{0} ^{1}=\frac{-1}{1}$ Find $P\left(-\frac{1}{2} \leq x \leq \frac{1}{2}\right)$ and $P\left(\frac{-3}{4} \leq x \leq 2\right)^{1}$

$$
\begin{aligned}
& \text { - } p\left(-\frac{1}{2} \leq x \leq \frac{1}{2}\right)=\int_{-\frac{1}{2}}^{\frac{1}{2}} f(x) d x=\int_{-\frac{1}{2}}^{0} \underset{\sim}{1 / 2}(x) d x+\int_{0}^{\frac{1}{2}} \underset{1}{\frac{1}{2}} \underset{1-x}{f(x)} d x=\int_{-\frac{1}{2}}^{0}(1+x) d x+ \\
& \begin{array}{l}
\int_{0}^{\frac{1}{2}}(1-x) d x=x+\left.\frac{x^{2}}{2}\right|_{-\frac{1}{2}} ^{0}+x-\left.\frac{x^{2}}{2}\right|_{0} ^{1 / 2}=\left[0-\left(-\frac{1}{2}+\frac{\left(-\frac{1}{2}\right)^{2}}{2}\right)^{f(x)} d x+\left[\left(\frac{1}{2}-\frac{\left(\frac{1}{2}\right)^{2}}{2}\right)_{-0}\right]\right. \\
=\frac{3}{8}+\frac{3}{8}=\frac{6}{8}=\frac{3}{4} \underbrace{f}_{1-x}(x) d x=\int_{-\frac{1}{2}}^{1}(1+x) d x+ \\
\end{array} \\
& \text { - } p\left(\frac{-3}{4} \leq x \leq 2\right)=\int_{-\frac{3}{4}}^{2} f(x) d x=\int_{-\frac{3}{4}}^{0} f^{2}(x) d x+\int_{0}^{1+x} f(x) d x+\int_{1}^{2 \pi} f(x) d x \\
& \begin{array}{c}
=\int_{-\frac{3}{4}}^{0}(1+x) d x+\int_{0}^{1}(1-x) d x+0=\left.\left(x+\frac{x^{2}}{2}\right)\right|_{-\frac{3}{4}} ^{0}+\left.\left(x-\frac{x^{2}}{2}\right)\right|_{0} ^{1}=\left[0-\left[\left(\frac{-3}{4}+\frac{\left(-\frac{3}{4}\right)^{2}}{2}\right]\right]\right. \\
\left.\quad+\left(\left(1-\frac{1}{2}\right)-0\right)=\frac{15}{3}+1=\frac{31}{3}\right]
\end{array} \\
& +\left(\left(1-\frac{1}{2}\right)-0\right)=\frac{15}{32}+\frac{1}{2}=\frac{31}{32}
\end{aligned}
$$

