Integral Calculus

Daniel Rakotonirina

March 21, 2017

Sequences and Infinite Series

Lecture note 27 Mar 14, 2016

* Sequences and Infinite Series *

To understand sequences and Series, you must understand how are related. The purposes of the first two sections (1. sequence & 2. Infinite Series) are to introduce Sequences and series, and to illustrate both their differences and their relationships with each other.

1. Sequences:

(1)

Let's start with an example : Consider the following List of numbers:

This list is an example of a sequence, where each number in the sequence is called a term of the sequence. we denote sequence in any of the following forms: $\{a_1, a_2, a_3, ..., a_n, ...\}, \{a_n\}_{n=1}^{\infty}$ or $\{a_n\}$. and note that the subscript n that appears in a_n is called an index. so, applying the above notation to air example, we have

 $a_1 = 2$, $a_2 = 5$, $a_3 = 8$, $a_4 = 11$, ...

as you can see, we do not have the general term on in this example.
but the a look at the terms
$$a_{1}, a_{2}, a_{3}, ..., ynill find the re-
lation between them, and you can find a pattern to guess an.
 $a_{1}^{(2)} a_{2}^{(3)} a_{3}^{(4)} a_{3}^{(3)} \cdots$ we can see this requere start with $a_{1}=2$
and then in each step we add $a_{1}^{(3)}$ to the pre-
invasion term. So, we want to shurt with 2
 $a_{1}^{(3)} a_{2}^{(3)} a_{3}^{(3)} \cdots$ $a_{n} = 2 + 3 n \rightarrow n=0, 1, 2, ...$
using this fact (underline sontences), we find out that we can write this list
 $a_{n} = 2 + 3 n \rightarrow n=0, 1, 2, ...$
 $a_{n} = 2 + 3 (n-1) \rightarrow n = 0, 2, 2, ...$
 $a_{n} = 2 + 3 (n-1) \rightarrow n = 0, 2, 3, ...$
using this fact (underline sontences), we find out that we can write this list
 $a_{n} = 3 + a_{n-1} + n=2, 3, 4, ...$ and $a_{1}=2$ $n=2 + a_{2} = 3 + a_{1} = 3 + a$$$

Example 1 (Explicit Formula) $(I) a_n = 2n - 1$ Here, we have the explicit formula, and try to find our sequence. we start with plugging n=1, n=2, n=3, to find it. $n=1 \rightarrow a_1 = 2(1) = 1 = 1$ Thus, $n=2 \rightarrow \alpha_2 = 2(2) - 1 = 3$ $\Rightarrow \{a_n\} = \{1, 3, 5, 7, ...\}$ $n=3 \rightarrow a_3 = 2(3) - 1 = 5$ $n=4 \rightarrow a_4 = 2(4) - 1 = 7$ (II) { 3, 10, 17, 24, ... } In this case, the sequence is given, and we need to find the explicit formula. terms $\begin{vmatrix} a_1 \\ 3 \\ lo \\ 17 \\ 24 \\ ...$ 2 3 4 n n you can see that so, we can write the formula as 17 24 an=3+7n n=0/123. +2(7) or an= 3+ 7(n-1) h=1,33 +3(7)

(II)
$$a_{n} = (\frac{1}{4})^{n}$$

 $n=1 \rightarrow a_{1} = (\frac{1}{4})^{1} = \frac{1}{4}$
 $n=2 \rightarrow a_{2} = (\frac{1}{4})^{2} = \frac{1}{16}$
 $n=3 \rightarrow a_{3} = (\frac{1}{4})^{3} = \frac{1}{64}$
 $n=4 \rightarrow a_{4} = (\frac{1}{4})^{4} = \frac{1}{256}$
(II) $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots\right\}$
To find an, it might be helpful to use the following table:
 $\frac{n}{1 + 2} = \frac{1}{2} + \frac{3}{3} + \frac{1}{4} + \frac{1}{12} + \frac{3}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{12} + \frac{3}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{12} + \frac{3}{2} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{4} + \frac{1}{2} + \frac{3}{2} + \frac{1}{2} + \frac{1}{2}$

(五) ~-1,1,, }
n 1 2 3 4 n
toms -1 1 -1 1 Cm
pattom or $-1 = (-1)^1$ $(-1) \cdot (-1)$ $(-1) \cdot (-1)$ $(-1) \cdot (-1)$ $(-1) \cdot (-1) \cdot (-1)$ gvess $= (-1)^2$ $= (-1)^3$ $= (-1)^4$ $(-1) \cdot (-1) \cdot (-1)$
We can see this sequence alternating between ± 1 and ± 1 . when we have odd term it is ± 1 and when we have even term is ± 1 . so, $a_n = (-1)^n$ $n = 1, 2,$ (VII) $\sum_{n=1}^{n} \frac{1}{2} \sum_{n=1}^{n} \frac{1}{2} \sum_{n=1}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
This one is a bit hard to guess. but when the regular guess like add and subtract did not work, go for powers (like square, cube,) here, you can see the sequence for cube ais 1, 8, 27, 64, and Now comparing with given sequence you find out they have only difference in 1". Thus, the answer would be $a_n = n^3 - 1$, $n = 1, 2, 3, 4,$

$$\begin{aligned} & \text{Example 2} \left(\text{Recurrence Relation} \right) \\ & (1) \begin{cases} a_{n+1} = 2a_{n+1} \\ a_{j} = 1, n = 1, 2, 3, \dots \\ n = 1, a_{n+1} = 2a_{j+1} + a_{n} = 2a_{2} + 1 = 2(n+1) = 1 \\ n = 1, a_{n+1} = 2a_{n+1} + a_{n} = 2a_{2} + 1 = 2(n+1) = 1 \\ n = 2, a_{n} = 2a_{n+1} = 2a_{n+1} + a_{n} = 2a_{2} + 1 = 2(n+1) = 1 \\ n = 1, a_{n+1} = 2a_{n+1} + a_{n} = 2a_{n+1} + 2(n+1) = 1 \\ n = 2, a_{n} = 2a_{n+1} = 2a_{n+1} + a_{n+1} = 2(n+1) = 1 \\ n = 1, a_{n+1} = 2a_{n+1} + n \\ n = 1 \\ n = 1, a_{n+1} = \frac{a_{n}}{a_{n-1}} + n \\ n = 1 \\ n = 1, a_{n+1} = \frac{a_{n}}{a_{n-1}} + n \\ n = 1 \\ n = 1, a_{n+1} = \frac{a_{n}}{a_{n-1}} + 1 = 2a_{n} = \frac{a_{n}}{a_{n-1}} + 1 \\ n = 2a_{n} = \frac{a_{n}}{a_{n-1}} + 1 = 2a_{n} = \frac{a_{n}}{a_{n-1}} + 1 \\ n = 2a_{n}$$

1.2 Limit of a Sequence The most important question about a sequence is this : If you go farther and farther out in the sequence how do the terms of the sequence behave? Do they approach a specific numbers (convorges) or they grow in magnitude without bound (divorged) To find a limit of a sequence we take n -> 00, and Comput lim an . if it converges → sequence converges .-Definition (limit of a sequence) → sequence diverges ... Let {an} be a sequence and LEIR. We say that the Ean? Converges to L if Ean? is sufficiently dose to L for all n large enough. In this case, we say lim an=L ~> "the limit of an is L, as n approaches infinity" otherwise, if the sequence {an} has no limit, we say that the {an} Diverges. (Summary: lim an = L exist -> Converges n + 00 lim an = doesn't exist -> Dibenges n - 100

Limit Laws:

* Theorem (limits of sequence from limits of functions) Suppose f is a function such that fin = an for all possible integers n. If lim fix = L, then the limit of the sequence {an} is also L. Example. Consider $a_n = \frac{1}{n^2 + 1} \cdot S_0$, $f_{n_1} = \frac{1}{n^2 + 1} = a_n \cdot N_0 w$, replace "n" by "z". so, $fix_{1} = \frac{1}{x^{2}+1}$. Taking $\lim_{X \to \infty} \frac{1}{x^{2}+1} = \frac{1}{x^{2}} =$, we get $\lim_{n \to \infty} \frac{1}{n^2 + 1} = 0$. * Theorem (limit Laws for sequences) Assume that the sequence Ean } and Ebn } have limit A and B, respectively. Then, 1. $\lim_{n \to \infty} (a_n \pm b_n) = A \pm B$ 2. lim can = cA, where c is a real number n-100 3. lim an bn = A.B 4. lim $\frac{a_n}{b_n} = \frac{A}{B}$, provided $B \neq \sigma$.

Example 3 . (limit of a Sequence) Determine the limit of the following sequences. Converges or Direrges 1? $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{n} = 0 \quad \text{and converges to "0"}$ $(I) a_{n} = \frac{4n^{5}}{12n^{5}+n^{3}-1} \xrightarrow{0} \qquad \Rightarrow \text{ we need to do some algebra...} \\ \lim_{n \to \infty} a_{n} = \lim_{n \to \infty} \frac{4n^{5}}{12n^{5}+n^{3}-1} = \lim_{n \to \infty} \frac{4n^{8}}{12n^{5}+n^{3}-1} = \lim_{n \to \infty} \frac{4}{12n^{5}+n^{3}-1} = \lim_{n \to \infty} \frac{4}{12n^{5}+n^{3}$ $= \lim_{n \to \infty} \frac{4}{12 + \frac{1}{n^2} + \frac{1}{n^5}} = \frac{4}{12} = \frac{1}{3} \cdot \frac{1}{n^{10}} \cdot \frac{1}{n^{10}} = \frac{1}{3} \cdot \frac{1}{12} \cdot \frac{1}{3} \cdot \frac{1}{n^{10}} \cdot \frac{1}{n^{10}} = \frac{1}{3} \cdot \frac{1}{12} \cdot \frac{1}{3} \cdot \frac{1}{12} = \frac{1}{3} \cdot \frac{1}{n^{10}} \cdot \frac{1}{n^{10}} \cdot \frac{1}{3} \cdot \frac{1}{12} \cdot \frac{1}{3} \cdot \frac{1}{12} \cdot \frac{1}{3} \cdot \frac$ (III) $a_n = n$ $(III) \quad a_n = n$ $\lim_{n \to \infty} a_n = \lim_{n \to \infty} n = \infty \rightarrow \{a_n\} = \{n\} \quad diverges$ $(II) \quad a_n = (-1)^n \rightarrow \{-1_{j_1, -1_{j_1, -1_{j_{j_1, -1_{j_1, -1_{j_$ This sequence alternating between -1 and +1, so, in infinity also me can not find out which value between + I and - 1 is does not exist and this sequence diverges.

(I) $a_n = \frac{(-1)^n n}{n^2 + 1} \longrightarrow \begin{cases} \frac{a_1}{2}, \frac{a_2}{5}, \frac{-3^3}{10}, \frac{a_4}{17}, \dots \end{cases}$ $n = 1 \quad n = 2 \quad n = 3 \quad n = 4 \quad j = 3 \quad j = 3 \quad j = 4 \quad j = 3 \quad j = 3 \quad j = 4 \quad j = 3 \quad j = 3 \quad j = 4 \quad j = 3 \quad j = 4 \quad j = 3 \quad j = 3 \quad j = 4 \quad j = 3 \quad j = 3 \quad j = 4 \quad j = 3 \quad j = 3 \quad j = 4 \quad j = 3 \quad j = 3 \quad j = 4 \quad j = 3 \quad j = 3 \quad j = 4 \quad j = 3 \quad j = 3 \quad j = 4 \quad j = 3 \quad j = 3 \quad j = 4 \quad j = 3 \quad j = 3 \quad j = 4 \quad j = 3 \quad j = 3 \quad j = 4 \quad j = 3 \quad j = 3 \quad j = 4 \quad j = 3 \quad j = 3 \quad j = 4 \quad j = 3 \quad j = 3 \quad j = 4 \quad j = 3 \quad j = 3 \quad j = 4 \quad j = 3 \quad j = 3 \quad j = 4 \quad j = 3 \quad j = 3 \quad j = 4 \quad j = 3 \quad j = 3 \quad j = 4 \quad j = 3 \quad j = 4 \quad j = 3 \quad j = 3 \quad j = 4 \quad j = 3 \quad j = 3 \quad j = 4 \quad j = 3 \quad j = 3 \quad j = 4 \quad j = 3 \quad j = 3 \quad j = 3 \quad j = 4 \quad j = 3 \quad j =$ The terms decrease in magnitude and approach zero with alternating signs. So, the limit appears to be $0 \cdot (\lim_{n \to \infty} \frac{(f)'n}{n^2+1} = 0)$. In other words, if you consider $\frac{n}{n^2+1}$ and $(-1)^n$ separately. $\lim_{n \to \infty} \frac{n}{n^2 + 1} = \lim_{n \to \infty} \frac{n}{n^2} + \lim_{n \to \infty} \frac{n}{n + 1} = \lim_{n \to \infty} \frac{1}{n + 1} = \lim_{n \to \infty} \frac{1}{n + 1} = 0$ but (-1)" altomating signs. Now as n -> 00, (-1)" still altomating between +1 and -1, but $\frac{n}{n^2+1} \rightarrow 0$. Therefore, (±1).0 = 0, as n-100. (see the following Figure) and (II) $a_n = 2e^n + 1$ $a_n \rightarrow sane algebra$ $lim a_n = lim 2e^n + 1 = lim \frac{2e^n + 1}{e^n}$ $n \rightarrow a_n = n \rightarrow a_n = n \rightarrow \infty$ e^n $= lim \frac{2e^{n}1}{le^n + le^n} = lim 2 + ln e^n$ $n \rightarrow \infty = lim 2 + ln = 2$ Note that $\lim_{n \to \infty} \frac{1}{e^n} = o(since \frac{1}{e^\infty} = \frac{1}{e^\infty} = o)$. For $\frac{1}{1}$ to $\frac{1}{2}$ $= \lim_{n \to \infty} \frac{-n+1}{7} = -\infty \rightarrow \{a_n\} \text{ diverges to } -\infty.$

Example 4 (a bit housder): (I) $q_n = \sqrt{n^2 + 1} - n$. To find $\lim_{n \to \infty} a_n$, we need to multiply the conjugate of $\sqrt{n^2 + 1} - n$, which is $\sqrt{n^2 + 1} + n$ in nominator and denominator. $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \sqrt{n^2 + 1} - n \cdot \frac{\sqrt{n^2 + 1} + n}{\sqrt{n^2 + 1} + n} = \lim_{n \to \infty} \frac{n^2 + 1 - n^2}{\sqrt{n^2 + 1} + n} = \lim_{n \to \infty} \frac{1}{\sqrt{n^2 + 1} + n}$ = Targe number nos = 0 !!! {an} converges to ". $(II) \quad a_n = \left(\frac{n+5}{n}\right)^n$ and the second from the second See Example 1 (page 608) an = n m Textbook (四) see Example 1 (page 608) Textbook

(5) Example 5 compare the lim on and lim bn, where n-100 n-100 $a_{n} = \frac{n^{\frac{5}{2}} + 1}{2n^{\frac{5}{2}} - 3} \text{ and } b_{n} = \frac{(-1)^{n} (n^{\frac{5}{2}} + 1)}{2n^{\frac{5}{2}} - 3} = (-1)^{n} a_{n}$ $\lim_{n \to \infty} a_{n} = \lim_{n \to \infty} \frac{n^{\frac{1}{2}} + 1}{2n^{\frac{5}{2}} - 3} = \lim_{n \to \infty} \frac{1 + \frac{1}{\sqrt{5}}}{2n^{\frac{5}{2}} - 3}$ $= \lim_{n \to \infty} \frac{n^{\frac{5}{2}} + 1}{n^{\frac{5}{2}} - 3} = \lim_{n \to \infty} \frac{1 + \frac{1}{\sqrt{5}}}{2 - \frac{3}{2} \pi^{\frac{5}{2}}} \text{ and odd terms is approach } \frac{1}{2} \text{ and odd terms is approach } -\frac{1}{2} \text{ Therefore, the sequence diverges, is approach } \frac{1}{2} \text{ and odd terms } \frac{1}{\sqrt{5}} \text{ approach } \frac{1}{2} \text{ and odd terms } \frac{1}{\sqrt{5}} \text{ approach } \frac{1}{2} \text{ and odd terms } \frac{1}{\sqrt{5}} \text{ approach } \frac{1}{2} \text{ and odd terms } \frac{1}{\sqrt{5}} \text{ approach } \frac{1}{2} \text{ and odd terms } \frac{1}{\sqrt{5}} \text{ approach } \frac{1}{2} \text{ and odd terms } \frac{1}{\sqrt{5}} \text{ approach } \frac{1}{2} \text{ and odd terms } \frac{1}{\sqrt{5}} \text{ approach } \frac{1}{2} \text{ and odd terms } \frac{1}{\sqrt{5}} \text{ approach } \frac{1}{2} \text{ and odd terms } \frac{1}{\sqrt{5}} \text{ approach } \frac{1}{2} \text{ and odd terms } \frac{1}{\sqrt{5}} \text{ approach } \frac{1}{2} \text{ and odd terms } \frac{1}{\sqrt{5}} \text{ approach } \frac{1}{2} \text{ approach } \frac{1}{2} \text{ and odd terms } \frac{1}{\sqrt{5}} \text{ approach } \frac{1}{2} \text{ and odd terms } \frac{1}{\sqrt{5}} \text{ approach } \frac{1}{2} \text{ approach } \frac{1}$ = $\lim_{n \to \infty} \frac{1}{2} = \frac{1}{2}$. illustrating the fact that the presence of $(-1)^n \max$ significantly alter the behavior of Ean) converges to 1/2 a sequence. Squeeze Theorem * Theorom (Squeeze Theorem for sequences) Let {an}, {bn}, and {cn} be sequences with ansbasin for all integers n greater than some index N. If lim an = lim cn = L, then lim b = L. Summary liman = L liman = L liman = L liman = L m bn=L an Lon LCn

Example 6. (Squeeze Theorem) Find the limit of the Sequences $a_n = \frac{\sin n}{n^2 + 1}$, $b_n = \frac{(-1)}{n}$, and $C_n = \frac{\cos(\frac{n\pi}{2})}{\sqrt{n}}$ • an = $\frac{\sin n}{n^2+1}$, use the fact that $-1 \leq \sin n \leq 1$. Thus, $-\frac{1}{n^2+1} \leq a_n \leq \frac{1}{n^2+1}$. In otherwords, $-\frac{1}{n^2+1} \leq \frac{\sin n}{n^2+1} \leq \frac{1}{n^2+1}$. Then, since $\lim_{n \to \infty} \frac{1}{n^2+1} = 0$ and lim - 1 = 0, by squeeze theorem, we get lim sih n = 0 n+00 - n2+1 = 0, by squeeze theorem, we get lim n+10 n2+1 $b_n = \underbrace{-1}_n \longrightarrow -1 \le b_n = \underbrace{-1}_n \le \underbrace{-1}_n \cdot \underbrace{-lim}_{n \neq \infty} \underbrace{-1}_n = o_n$ So, by squeeze theorem ~> lim (-1) =0 • $C_n = \frac{Cos(\underline{n}_{1})}{\sqrt{n}}$ (Note that $Cos(\underline{n}_{1})$ for n=1/23, $-1 < \frac{Cos(\underline{n}_{1})}{\sqrt{n}} \leq \frac{1}{\sqrt{n}}$ $Cos(\underline{n}_{2})_{s}$ (is always $o_{5}1 \text{ or } -1$) $\sqrt{n} \leq \sqrt{n} \leq \sqrt{n}$ $Cos(\underline{n}_{2})_{s}$ (\overline{n}_{2}) $Cos(\underline{n}_{2})_{s}$ ($\overline{n}_{2})$ (\overline{n}_{2}) $Cos(\underline{n}_{2})_{s}$ ($\overline{n}_{2})_{s}$ ($\overline{n}_{2})_{s}$ cos(π)=-1 cos(2π)=1 ¥ Terminology for Sequence ¥ Theoretim Cn = 0 We now introduce some terminology for sequences that is similar to that used for functions. · {an} is increasing if antivan; Example, {1,2,3,4,...} · {an} is nondecreasing if ant 2an; Example, {1,1,1, 2,2,3,3,...} · {an} is decreasing if antican; Example, {10,9,8,7,...} · {an } is nondecreasing if an +1 ≤ an ; Example, {0, -1, -1, -2, -2, ... } · {an } is monotonic if it is either non increasing or non-decreasing (it moves in one direction) · Ean is bounded if there is number M such that Ian I M, for all relevant values of n.

6 Geometric Sequences

Geometric Sequences have the property that each term is obtained by multiplying the previous term by a fixed constant, called the ratio. They have the following form $\{r^n\}$ or $\{ar^n\} \longrightarrow$ the ratio r^{*} $a \neq o \Rightarrow$ real number example \rightarrow $\{\frac{1}{2}, \frac{1}{2^2}, \frac{1}{2^3}, \frac{1}{2^4}, \dots \} \rightarrow \{r = \frac{1}{2} \\ a = 1 \\ or \{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots \} \\ \cdot \{\frac{-4}{5}, \frac{-4}{5^2}, \frac{-4}{5^3}, \frac{-4}{5^4}, \dots \} \rightarrow \{r = \frac{1}{5} \\ a = -4 \end{cases}$

Example 7: (Geometric Sequences) Find the limit of the following sequences.

 $(\mathbf{I})_{n=\binom{3}{4}}^{n} \qquad \lim_{n \to \infty} \frac{3^{n}}{4^{n}} = \frac{\infty}{\infty} \quad \text{hut between } 3^{n} \text{ and } 4^{n}$ $4^{n} \text{ goes faster to } \infty \quad \text{therefore, } \lim_{n \to \infty} \left(\frac{3}{4}\right)^{n} = 0$ $(\mathbf{I})_{n=\binom{-3}{4}}^{n}$ With the same argument in example 7, we get $\lim_{b \to \infty} h_{n} = \lim_{n \to \infty} (-1)^{n} \left(\frac{3}{4}\right)^{n} = 0.$

 $(III) \left(\frac{8}{5}\right)^n = C_n$ $C_n = \left(\frac{8}{5}\right)^n = \frac{8^n}{5^n} \longrightarrow \lim_{n \to \infty} c_n = \lim_{n \to \infty} \frac{8^n}{5^n} = \frac{\infty}{\infty}$. Note that 8^n goes faster to a than 5^n . Thus, at infinity, 8^n mins and is stronger. Then, $\lim_{n \to \infty} c_n = \lim_{n \to \infty} (\frac{8}{5})^n = a \rightarrow \{C_n\}$ diverges $(II) d_n = \left(\frac{-8}{5}\right)^n$ $d_n = \left(\frac{-8}{5}\right)^n = (H)^n \left(\frac{8}{5}\right)^n$. Since $\lim_{n \to \infty} \left(\frac{8}{5}\right)^n = \infty$ and $(H)^n$ alternating between +1 and -1, $d_n = \left(\frac{-8}{5}\right)^n$ diverges. * Theorem (Geometric Sequence) * Let "r" be a real number. Then, $\lim_{n \to \infty} r^n = \begin{cases} 0 & -|\langle r \langle 1 \rangle \\ 1 & r = 1 \\ does not exist r > 1 or r \leq -1 \end{cases}$ r<-1 | -1<r<1 | r>1 Direrges | Converges | Diverges > Also, frio ~> {rnj monotonic rxo ~> {rnj oscillates

Example 8: Find the limit of the following sequences: $(I) \quad a_n = (\frac{2}{a})^n$ In this sequence $r = \frac{2}{q}$. Since $-Kr = \frac{2}{q} < 1$, we have $\lim_{n \to \infty} a_n = \lim_{n \to \infty} (\frac{2}{q})^n \in O$ $(\mathbb{I}) \quad b_n = \left(\frac{-10}{7}\right)^n$ Here, $r = -\frac{10}{7}$. Since $-1 > r = -\frac{10}{7}$, we have $\lim_{n \to \infty} b_n = \lim_{n \to \infty} (-\frac{10}{7})^n divergence in the second se$ $(II) C_n = \frac{2^n + 5^n}{6^n} \longrightarrow we can rewrite it as <math>C_n = \frac{2^n}{6^n} + \frac{5^n}{6^n} = (\frac{1}{3})^n + (\frac{5}{6})^n$ $\begin{array}{c} \text{For } \left(\frac{1}{3}\right)^{n} \rightarrow & -|\langle r=\frac{1}{3}\langle 1 \rangle \rightarrow \lim_{n \to \infty} \left(\frac{1}{3}\right)^{n} = 0 \\ \text{for } \left(\frac{5}{2}\right)^{n} \rightarrow & -|\langle r=\frac{5}{3}\langle 1 \rangle \rightarrow \lim_{n \to \infty} \left(\frac{5}{2}\right)^{n} = 0 \\ \end{array} \right\} \rightarrow \lim_{n \to \infty} c_{n} = \lim_{n \to \infty} \frac{2^{n} 5^{n}}{6^{n}} = 0 \\ \begin{array}{c} \text{for } \left(\frac{5}{2}\right)^{n} \rightarrow & -|\langle r=\frac{5}{3}\langle 1 \rangle \rightarrow \lim_{n \to \infty} \left(\frac{5}{2}\right)^{n} = 0 \\ \end{array} \right\} \rightarrow \lim_{n \to \infty} c_{n} = \lim_{n \to \infty} \frac{2^{n} 5^{n}}{6^{n}} = 0 \\ \end{array}$ (I) $d_n = \frac{4^n - 8^n}{q^n} \rightarrow me$ can rewrite it as $d_n = \frac{4^n 8^n}{q^n} = (\frac{4}{q})^n (\frac{8}{q})^n$. (II) $e_n = \begin{cases} 2^{n+1} - n \\ 3^n \end{cases}$ we can rownite it as $e_n = \frac{2^{n+1}}{3^n} = \frac{2^n \cdot 2}{3^n} = 2(\frac{2}{3})^n$. $For \left(\frac{2}{3}\right)^{n} \rightarrow -1 < r = \frac{2}{3} < 1 \rightarrow lim \left(\frac{2}{3}\right)^{n} = 0 \quad Thus, lim en = lim 2\left(\frac{2}{3}\right)^{n} = 2 \ lim \left(\frac{2}{3}\right)^{n} = 0$ $(VI) k_{n} = \begin{cases} 5(1)^{n} \\ 1 - 9^{n} \end{cases}$ Since r= -1.01, and -1.01 < -1, we have lim (-1.01)=0. Thus, lim Kn =0 $(III) P_n = \sum_{n=1}^{n} \frac{2^n + \cos n}{5^n} \xrightarrow{n} We \ Can rewrite it as P_n = \frac{2^n}{5^n} + \frac{\cos n}{5^n} = \left(\frac{2}{5}\right)^n + \frac{\cos n}{5^n}$ $\operatorname{For} \left(\frac{2}{5}\right)^{n} \rightarrow -|\langle r = \frac{2}{5} \langle 1 \rangle \rightarrow \operatorname{lim} \left(\frac{2}{5}\right)^{n} = 0$ For cosn, we use squeeze theorem, since -1500sn <1 (lim Pn= we have $-\frac{1}{5n} \leq \frac{\cos n}{5n} \leq \frac{1}{5n}$ we have also $\lim_{n \to \infty} \frac{-1}{5n} = \lim_{n \to \infty} \frac{1}{5n} = 0$, by squeeze theorem $\longrightarrow \lim_{n \to \infty} \frac{\cos n}{5n} = 0$ $\lim_{n \to \infty} \frac{2^{n} + \cos n}{5n} = 0$