Integral Calculus

Daniel Rakotonirina

January 8, 2017

Planes in \mathbb{R}^{3}

0.1 Recall of dot product

Given two vectors $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$. The dot product is defined as:

$$
\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2}+v_{2}+u_{3} v_{3}
$$

Two vectors $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ are parallel if:

$$
\frac{u_{1}}{v_{1}}=\frac{u_{2}}{v_{2}}=\frac{u_{3}}{v_{3}}=c
$$

Two vectors $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ are orthogonal if $\mathbf{u} \cdot \mathbf{v}=0$.

0.2 Plane passing through a point and perpendicular to a vector

Given a fixed point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ and a nonzero normal vector \mathbf{n}, the set of points P in \mathbb{R}^{3} for which $\overrightarrow{P_{0} P}$ is orthogonal to \mathbf{n} is called a plane. (cf. p.858)

If a point $P(x, y, z)$ is on the plane, $\overrightarrow{P_{0} P}$ must be orthogonal to the normal vector $\mathbf{n}=\langle a, b, c\rangle$. On the one hand, any point $P(x, y, z)$ on the plane, we know that $\overrightarrow{P_{0} P}$ must be orthogonal to $\mathbf{n}=\langle a, b, c\rangle$. On the other hand, we know that $\overrightarrow{P_{0} P}=\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle$. Therefore, by definition $\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle \cdot\langle a, b, c\rangle=0$ $\left(\overrightarrow{P_{0} P}\right.$ orthogonal to $\left.\mathbf{n}\right)$. The result of the dot product is:

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

After a simplification, we have:

$$
\begin{array}{r}
a x-a x_{0}+b y-b y_{0}+c z-c z_{0}=0 \\
a x+b y+c z=a x_{0}+b y_{0}+c z_{0}
\end{array}
$$

where $d=a x_{0}+b y_{0}+c z_{0}$. Therefore,

$$
a x+b y+c z=d
$$

Related Exercises sec. 12.1 (11-16)

Example 0.1. Find the equation of the plane passing through $P_{0}(-1,1,1)$ with a normal vector $\mathbf{n}=\langle 2,-1,4\rangle$. We have P_{0} and \mathbf{n} so we just need to replace the variables in the general formula to get the equation.
Here $P_{0}\left(x_{0}, y_{0}, z_{0}\right)=P_{0}(-1,1,1)$ and $\mathbf{n}=\langle a, b, c\rangle=\langle 2,-1,4\rangle$.
So,

$$
\begin{array}{r}
2(x-(-1))+(-1)(y-1)+4(z-1)=0 \\
2(x+1)-1(y-1)+4(z-1)=0 \\
2 x+2-y+1+4 z-4=0 \\
2 x-y+4 z=1
\end{array}
$$

Example 0.2. Find an equation of the plane P passing through the point $(3,0,1)$ and is parallel to the plane $3 x-2 y-z=0$. We know that the vector $\mathbf{n}=\langle 3,-2,-1\rangle$ is the normal to the plane $3 x-2 y-z=0$. Now,

because the planes P and $3 x-2 y-z=0$ are parallel, the vector $\mathbf{n}=\langle 3,-2,-1\rangle$ is also orthogonal to P and it is also a normal vector to P so,

$$
\begin{array}{r}
P: 3(x-3)-2(y-0)-1(z-1)=0 \\
P: 3 x-2 y-z=8
\end{array}
$$

0.3 Orthogonal and parallel planes

Two distinct planes (Q and R) are parallel if their respective normal vectors are parallel. It means that the normal vectors are scalar multiple of each other $\left(\mathbf{n}_{Q}=c \mathbf{n}_{R}\right)$.
Two planes $(Q$ and R) are orthogonal if their respective normal vectors are orthogonal. It means that the dot product of the normal vectors are zero $\left(\mathbf{n}_{Q} \cdot \mathbf{n}_{R}=0\right)$. Related Exercises sec. 12.1 (25-30)

Note: How to find out if two planes P_{1} and P_{2} are orthogonal or parallel?

- Find the normal vectors $\mathbf{n}_{1}=\left\langle a_{1}, b_{1}, c_{1}\right\rangle$ and $\mathbf{n}_{2}=\left\langle a_{2}, b_{2}, c_{2}\right\rangle$
- If \mathbf{n}_{1} and \mathbf{n}_{2} parallel $\Longrightarrow P_{1}$ and P_{2} are parallel. It means:

$$
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}=c
$$

- If \mathbf{n}_{1} and \mathbf{n}_{2} orthogonal $\Longrightarrow P_{1}$ and P_{2} are orthogonal. It means:

$$
\mathbf{n}_{1} \cdot \mathbf{n}_{2}=0
$$

Example 0.3. Which of the following distinct planes are parallel and which are orthogonal?

$$
\begin{array}{cl}
Q: 2 x-3 y+6 z=12 & R:-x+\frac{3}{2} y-3 z=14 \\
S: 6 x+8 y+2 z=1 & T:-9 x-12 y-3 z=7
\end{array}
$$

First, let's find the normal vectors. They are:

$$
\begin{aligned}
Q: 2 x-3 y+6 z=12 \Rightarrow \mathbf{n}_{Q}=\langle 2,-3,6\rangle & R:-1 x+\frac{3}{2} y-\mathbf{3} z=14 \Rightarrow \mathbf{n}_{R}=\left\langle-1, \frac{3}{2},-3\right\rangle \\
S: 6 x+8 y+2 z=1 \Rightarrow \mathbf{n}_{S}=\langle 6,8,2\rangle & T:-\mathbf{9} x-12 y-\mathbf{3} z=7 \Rightarrow \mathbf{n}_{T}=\langle-9,-12,-3\rangle
\end{aligned}
$$

Notice that $\mathbf{n}_{Q}=-2 \mathbf{n}_{R}$. It means that:

$$
\frac{2}{-1}=\frac{-3}{3 / 2}=\frac{6}{-3}=-2
$$

This implies that Q and R are parallel. Similarly, $\mathbf{n}_{T}=-\frac{3}{2} \mathbf{n}_{S}$,

$$
\frac{-9}{6}=\frac{-12}{8}=\frac{-3}{2}=-\frac{3}{2}
$$

so S and T are parallel. Furthermore, $\mathbf{n}_{Q} \cdot \mathbf{n}_{S}=0$:

$$
\mathbf{n}_{Q} \cdot \mathbf{n}_{S}=2(6)+(-3)(8)+6(2)=0
$$

and $\mathbf{n}_{Q} \cdot \mathbf{n}_{T}=0$:

$$
\mathbf{n}_{Q} \cdot \mathbf{n}_{T}=2(-9)+(-3)(-12)+6(-3)=0
$$

which implies that Q is orthogonal to S and T. Because Q and R are parallel, it follows that R is also orthogonal to both S and T.

