Integral Calculus

Daniel Rakotonirina

January 11, 2017

Function of 2 variables

0.1 Recall on a function of one variable

A variable is a quantity that can take a range of values (e.g. population, poverty rate, etc.). A function of one variable takes a variable x and produces another variable y. The explicit form of the function is:

$$
y=f(x)
$$

Here x is an independent variable and y is a dependent variable. It means that the value of y (or $f(x)$) depends on that of x. Equations in two variables can be written out of the function (it is its implicit form):

$$
F(x, y)=0
$$

Important: Domain and range of a function

The domain \mathcal{D}_{f} of a function $y=f(x)$ is a subset of \mathbb{R} consisting of all points x that are allowed to be considered as inputs for the function $f(x)$. In other words, all the points for which $f(x)$ is defined. The range of f is the set of real number y that the function $f(x)$ can take.

Example 0.1. $y=f(x)=\frac{1}{x-2}$. The function $f(x)$ is not defined if $x-2=0$. It means that x should not be equal to 2 . So the domain of $f(x)$ is $\mathcal{D}_{f}=\{x \in \mathbb{R} \mid x \neq 2\}$ or $\left.\mathcal{D}_{f}=\right]-\infty ; 2[\cup] 2 ;+\infty[$

Example 0.2. $y=f(x)=\frac{1}{x^{2}-3 x+1}$. The function $f(x)$ is not defined for $x^{2}-3 x+1=0$. For that we have to find the roots of $x^{2}-3 x-1=0$. So we have $x_{1}=\frac{3-\sqrt{5}}{2}$ and $x_{2}=\frac{3+\sqrt{5}}{2}$. This means that the function $f(x)$ is discontinuous at these two points. So, we have $\mathcal{D}_{f}=\left\{x \in \mathbb{R} \left\lvert\, x \neq \frac{3-\sqrt{5}}{2}\right., \frac{3+\sqrt{5}}{2}\right\}$ or $\left.\mathcal{D}_{f}=\right]-\infty ; \frac{3-\sqrt{5}}{2}[\cup] \frac{3+\sqrt{5}}{2} ;+\infty[$

0.2 Function of two variables (sec. 12.2)

A function of two variables takes two variables x and y and produces another variable z. The explicit form is written as follows:

$$
z=f(x, y)
$$

For each point (x, y) a unique value of z is assigned by the function $z=f(x, y)$. In other words, the input is the point (x, y) and the output is z. Here the independent variables are x and y. Whereas the depend variable is z.

The implicit form is written as follows:

$$
F(x, y)=0
$$

Example 0.3. $z=f(x, y)=e^{\left(-x^{2}-y^{2}\right) / 3} \Longrightarrow F(x, y, z)=z-e^{\left(-x^{2}-y^{2}\right) / 3}=0$
$z=f(x, y)=x^{2}+y^{2} \Longrightarrow F(x, y, z)=z-x^{2}-y^{2}=0$

Domain and range with two independent variables

Definition 1. Domain. The set of (x, y) points, called \mathcal{D}_{f}, on the $x y$-plane for which the function $f(x, y)$ is defined.

Definition 2. Range. It is the set of real numbers z that the function $f(x, y)$ can take.
Related Exercises sec. 12.2 11-20
In general the function of two variables $f(x, y)$ can be written in the following form:

- Polynomial function: $f(x, y)=U(x, y) . \mathcal{D}_{f}=\left\{(x, y) \in \mathbb{R}^{2}\right\}$

Example 0.4. $z=f(x, y)=x^{2} y+x y-3 x y^{2}$. Here the domain is defined as: $\mathcal{D}_{f}=\left\{(x, y) \in \mathbb{R}^{2}\right\}$ because we can pick up all (x, y) points on the $x y$-plane.

- Irrational function: $f(x, y)=\sqrt{U(x, y)}$. Here, the function $f(x, y)$ is not defined if $U(x, y)<0$. It means that we can not have negative numbers under the square root. So $\mathcal{D}_{f}=\left\{(x, y) \in \mathbb{R}^{2} \mid U(x, y) \geqslant 0\right\}$

Example 0.5. $f(x, y)=\sqrt{4-x^{2}-y^{2}}$. Here, f is defined for $4-x^{2}-y^{2} \geqslant 0$ or $x^{2}+y^{2} \leqslant 4$. It means that the domain is all (x, y) points corresponding to $x^{2}+y^{2} \leqslant 4$. This is an equation of a circle of radius $r=\sqrt{4}=2$ centered at $(0,0)$. Here $\mathcal{D}_{f}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leqslant 4\right\}$.

- Rational function: $f(x, y)=\frac{U(x, y)}{V(x, y)}$. A rational form is defined if the denominator is not equal to 0 $(V(x, y) \neq 0)$

Example 0.6. $f(x, y)=\frac{x}{x^{2}-y^{2}}$. Here $f(x, y)$ is defined if and only $x^{2}-y^{2} \neq 0$, which means that $x \neq \pm y$. So the domain of the function f is $\mathcal{D}_{f}=\left\{(x, y) \in \mathbb{R}^{2} \mid x \neq \pm y\right\}$. Here we can pick up any point (x, y) expect those on the $y=x$ and $y=-x$ curves.

Graph, trace and level curves of a function of two variables

0.3 Graph of a function of two variables

Definition 3. Graph. It is the set of points (x, y, z) that satisfy the equation $z=f(x, y)$. More specifically, for each point (x, y) on the $x y$-plane in the domain of f, the point (x, y, z) lies on the graph of f.

Related Exercises sec 12.2 21-29
Example 0.7. Graphing two-variable functions. Find the domain and range of $z=f(x, y)=2 x+3 y-12$. Here f is defined for all (x, y) points in \mathbb{R}^{2} and the range is all the z-value in \mathbb{R}. So $\mathcal{D}_{f}=\left\{(x, y) \in \mathbb{R}^{2}\right\}$.

Example 0.8. Graphing two-variable functions. Find the domain and range of $z=f(x, y)=x^{2}+y^{2}$. Here f is defined for all (x, y) points in \mathbb{R}^{2} and the range is all nonnegative z-value in \mathbb{R}. So $\mathcal{D}_{f}=\left\{(x, y) \in \mathbb{R}^{2}\right\}$.

We have a paraboloid $z=x^{2}+y^{2}$.

Example 0.9. Graphing two-variable functions. Find the domain and range of $z=f(x, y)=\sqrt{1+x^{2}+y^{2}}$. Here f is defined for $1+x^{2}+y^{2} \geqslant 0$. Note that $1+x^{2}+y^{2} \geqslant 1$ so the range is $\{z: z \geqslant 1\}$. Squaring both sides of the $f(x, y)$, we have $z^{2}=1+x^{2}+y^{2}$ or $-x^{2}-y^{2}+z^{2}=1$. This is the equation of a hyperboloid of two sheets that opens along the z-axis.

So the domain of definition is $\mathcal{D}_{f}=\left\{(x, y) \in \mathbb{R}^{2}\right\}$.

$$
z=\sqrt{1+x^{2}+y^{2}}
$$

These are the typical graphs that we are going to see in this section:

- Sphere centered at $(0,0,0)$ with a radius $a: x^{2}+y^{2}+z^{2}=a^{2}$
- Elliptic Paraboloid: $z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}, a \neq b$
- Elliptic Hyperboloid: $-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$

0.4 Traces of a function of two variables (sec. 12.1)

Definition 4. Trace. It is a set of points at which the surface intersects a plane that is that is parallel to one of the coordinate planes. The traces in the coordinate planes are called $x y$-trace, the $y z$-trace and the $x z$-trace. Related Exercises sec. 12.1 51-54

Example 0.10. Given a graph $z=\frac{x^{2}}{16}+\frac{y^{2}}{4}$. Find and sketch the trace in $z=1$.

Example 0.11. Given a graph $z=\frac{x^{2}}{16}+\frac{y^{2}}{4}$. Find and sketch the trace in $x=-4$.

Example 0.12. Given a graph $z=\frac{x^{2}}{16}+\frac{y^{2}}{4}$. Find and sketch the trace in $y=3$.

Intersection at $y=3 \Longrightarrow z=\frac{x^{2}}{16}+\frac{(3)^{2}}{4}$. So we have

$$
z=\frac{x^{2}}{16}+\frac{9}{4}
$$

This is a parabola

0.5 Level Curves

Functions of two variables presented by surfaces in \mathbb{R}^{3}. Instead of a 3 D view, we are flattening everything in 2D plane. It is used in topography for instance.

Figure 1: Map of Mount Everest using level curves (traces).

Example 0.13. $z=\frac{x^{2}}{4}+\frac{y^{2}}{4}$. Find the levels for $z=1,2,3,4,5,6,7$. We just have to replace the value of z in the equation and find the corresponding ellipse equations.
We know how to find the equations of traces and sketch them. So we have,

Example 0.14. $z=\frac{x^{2}}{16}+\frac{y^{2}}{4}$. Find the levels for $z=1,2,3,4$. We just have to replace the value of z in the equation and find the corresponding ellipse equations.
We know how to find the equations of traces and sketch them. So we have,

Remarks

- The equation of a circle of radius r and centered at $(0,0)$ is $x^{2}+y^{2}=r^{2}$
- The equation of an ellipse centered at $(0,0)$ is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

