Integral Calculus

Daniel Rakotonirina

January 11, 2017

Function of 2 variables

0.1 Recall on a function of one variable

A variable is a quantity that can take a range of values (e.g. population, poverty rate, etc.). A function of one variable takes a variable x and produces another variable y. The explicit form of the function is:

$$y = f(x)$$

Here x is an **independent** variable and y is a **dependent** variable. It means that the value of y (or f(x)) depends on that of x. Equations in two variables can be written out of the function (it is its implicit form):

$$F(x,y) = 0$$

Important: Domain and range of a function

The **domain** \mathcal{D}_f of a function y = f(x) is a subset of \mathbb{R} consisting of all points x that are allowed to be considered as inputs for the function f(x). In other words, all the points for which f(x) is defined. The **range** of f is the set of real number y that the function f(x) can take.

Example 0.1. $y = f(x) = \frac{1}{x-2}$. The function f(x) is not defined if x - 2 = 0. It means that x should not be equal to 2. So the domain of f(x) is $\mathcal{D}_f = \{x \in \mathbb{R} | x \neq 2\}$ or $\mathcal{D}_f =]-\infty; 2[\cup]2; +\infty[$

Example 0.2. $y = f(x) = \frac{1}{x^2 - 3x + 1}$. The function f(x) is not defined for $x^2 - 3x + 1 = 0$. For that we have to find the roots of $x^2 - 3x - 1 = 0$. So we have $x_1 = \frac{3 - \sqrt{5}}{2}$ and $x_2 = \frac{3 + \sqrt{5}}{2}$. This means that the function f(x) is discontinuous at these two points. So, we have $\mathcal{D}_f = \left\{x \in \mathbb{R} | x \neq \frac{3 - \sqrt{5}}{2}, \frac{3 + \sqrt{5}}{2}\right\}$ or $\mathcal{D}_f = \left] -\infty; \frac{3 - \sqrt{5}}{2} \left[\cup \right] \frac{3 + \sqrt{5}}{2}; +\infty \right[$

0.2 Function of two variables (sec. 12.2)

A function of two variables takes two variables x and y and produces another variable z. The explicit form is written as follows:

$$z = f(x, y)$$

For each point (x, y) a unique value of z is assigned by the function z = f(x, y). In other words, the input is the point (x, y) and the output is z. Here the **independent** variables are x and y. Whereas the depend variable is z. The implicit form is unitated on follows:

The implicit form is written as follows:

$$F(x,y) = 0$$

Domain and range with two independent variables

Definition 1. Domain. The set of (x, y) points, called \mathcal{D}_f , on the xy-plane for which the function f(x, y) is defined.

Definition 2. Range. It is the set of real numbers z that the function f(x, y) can take.

Related Exercises sec. 12.2 11–20

In general the function of two variables f(x, y) can be written in the following form:

• Polynomial function: f(x,y) = U(x,y). $\mathcal{D}_f = \{(x,y) \in \mathbb{R}^2\}$

Example 0.4. $z = f(x, y) = x^2y + xy - 3xy^2$. Here the domain is defined as: $\mathcal{D}_f = \{(x, y) \in \mathbb{R}^2\}$ because we can pick up all (x, y) points on the xy-plane.

• Irrational function: $f(x,y) = \sqrt{U(x,y)}$. Here, the function f(x,y) is not defined if U(x,y) < 0. It means that we can not have negative numbers under the square root. So $\mathcal{D}_f = \{(x,y) \in \mathbb{R}^2 | U(x,y) \ge 0\}$

Example 0.5. $f(x,y) = \sqrt{4 - x^2 - y^2}$. Here, f is defined for $4 - x^2 - y^2 \ge 0$ or $x^2 + y^2 \le 4$. It means that the domain is all (x, y) points corresponding to $x^2 + y^2 \le 4$. This is an equation of a circle of radius $r = \sqrt{4} = 2$ centered at (0,0). Here $\mathcal{D}_f = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 \le 4\}$.

• Rational function: $f(x,y) = \frac{U(x,y)}{V(x,y)}$. A rational form is defined if the denominator is not equal to 0 $(V(x,y) \neq 0)$

Example 0.6. $f(x,y) = \frac{x}{x^2 - y^2}$. Here f(x,y) is defined if and only $x^2 - y^2 \neq 0$, which means that $x \neq \pm y$. So the domain of the function f is $\mathcal{D}_f = \{(x,y) \in \mathbb{R}^2 | x \neq \pm y\}$. Here we can pick up any point (x,y) expect those on the y = x and y = -x curves.

Graph, trace and level curves of a function of two variables

0.3 Graph of a function of two variables

Definition 3. Graph. It is the set of points (x, y, z) that satisfy the equation z = f(x, y). More specifically, for each point (x, y) on the xy-plane in the domain of f, the point (x, y, z) lies on the graph of f.

Related Exercises sec 12.2 21–29

Example 0.7. Graphing two-variable functions. Find the domain and range of z = f(x, y) = 2x + 3y - 12. Here f is defined for all (x, y) points in \mathbb{R}^2 and the range is all the z-value in \mathbb{R} . So $\mathcal{D}_f = \{(x, y) \in \mathbb{R}^2\}$.

Example 0.8. Graphing two-variable functions. Find the domain and range of $z = f(x, y) = x^2 + y^2$. Here f is defined for all (x, y) points in \mathbb{R}^2 and the range is all nonnegative z-value in \mathbb{R} . So $\mathcal{D}_f = \{(x, y) \in \mathbb{R}^2\}$. We have a paraboloid $z = x^2 + y^2$.

Example 0.9. Graphing two-variable functions. Find the domain and range of $z = f(x, y) = \sqrt{1 + x^2 + y^2}$. Here f is defined for $1 + x^2 + y^2 \ge 0$. Note that $1 + x^2 + y^2 \ge 1$ so the range is $\{z : z \ge 1\}$. Squaring both sides of the f(x, y), we have $z^2 = 1 + x^2 + y^2$ or $-x^2 - y^2 + z^2 = 1$. This is the equation of a hyperboloid of two sheets that opens along the z-axis.

So the domain of definition is $\mathcal{D}_f = \{(x, y) \in \mathbb{R}^2\}.$

These are the typical graphs that we are going to see in this section:

- Sphere centered at (0, 0, 0) with a radius a: $x^2 + y^2 + z^2 = a^2$
- Elliptic Paraboloid: $z = \frac{x^2}{a^2} + \frac{y^2}{b^2}, a \neq b$
- Elliptic Hyperboloid: $-\frac{x^2}{a^2} \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

0.4 Traces of a function of two variables (sec. 12.1)

Definition 4. Trace. It is a set of points at which the surface **intersects** a plane that is that is **parallel** to one of the **coordinate planes**. The traces in the coordinate planes are called xy-trace, the yz-trace and the xz-trace. Related Exercises sec. 12.1 51-54

Example 0.10. Given a graph $z = \frac{x^2}{16} + \frac{y^2}{4}$. Find and sketch the trace in z = 1.

Intersection at $z = 1 \implies 1 = \frac{x^2}{16} + \frac{y^2}{4}$. So we have $\frac{x^2}{16} + \frac{y^2}{4} = 1$

This is the equation of an ellipse (center (0,0,0), a = 4 and b = 2)

Example 0.11. Given a graph $z = \frac{x^2}{16} + \frac{y^2}{4}$. Find and sketch the trace in x = -4.

Example 0.12. Given a graph $z = \frac{x^2}{16} + \frac{y^2}{4}$. Find and sketch the trace in y = 3.

0.5 Level Curves

Functions of two variables presented by surfaces in \mathbb{R}^3 . Instead of a 3D view, we are flattening everything in 2D plane. It is used in topography for instance.

Figure 1: Map of Mount Everest using level curves (traces).

Example 0.13. $z = \frac{x^2}{4} + \frac{y^2}{4}$. Find the levels for z = 1, 2, 3, 4, 5, 6, 7. We just have to replace the value of z in the equation and find the corresponding ellipse equations.

We have a first the corresponding empse equations.

We know how to find the equations of traces and sketch them. So we have,

Example 0.14. $z = \frac{x^2}{16} + \frac{y^2}{4}$. Find the levels for z = 1, 2, 3, 4. We just have to replace the value of z in the equation and find the corresponding ellipse equations.

We know how to find the equations of traces and sketch them. So we have,

Remarks

- The equation of a circle of radius r and centered at (0,0) is $x^2 + y^2 = r^2$
- The equation of an ellipse centered at (0,0) is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$