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1 Approximating Area under Curves (textbook section 5)

1.1 Area under a curve
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Figure 1: Displacement of a car at a constant velocity 60km/h and a car moving at a velocity given by v = t2.
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1.2 How to calculate the area?
1. Approximate the area using rectangles

2. Better approximation to get smaller error

Approximation using rectangles

Here we want to approximate the area under the curve for which x ∈ [a, b] where a = 0 and b = 2. Three cases
can be considered:

0 1
2

1 3
2

2
0

4

0 1
2

1 3
2

2
0

4

0 1
2

1 3
2

2
0

4

• Case 1: Left end points

Here the interval x ∈ [0, 2] is divided in 4 sub-interval whose lengths are all equal (here, spaced by

∆x = 0.5). The upper-left end of the rectangles are intersecting the function. The sum of the rectangles
gives an approximation of the area under the curve.
Area = f(0) ·∆x+ f(1/2) ·∆x+ f(1) ·∆x+ f(3/2) ·∆x

• Case 2: Mid points

Here the interval x ∈ [0, 2] is divided in 4 sub-interval whose lengths are all equal (here, spaced by

∆x = 0.5). The function is intersecting the rectangles at their upper-mid edges. The sum of the
rectangles gives an approximation of the area under the curve.
Area = f(1/4) ·∆x+ f(3/4) ·∆x+ f(5/4) ·∆x+ f(7/4) ·∆x

• Case 3: Right end points

Here the interval x ∈ [0, 2] is divided in 3 sub-interval whose lengths are all equal (here, spaced by

∆x = 0.5). The upper-right end of the rectangles are intersecting the function. The sum of the
rectangles gives an approximation of the area under the curve.
Area = f(1/2) ·∆x+ f(1) ·∆x+ f(3/2) ·∆x

How to decrease the error?

Better approximation means more rectangles. In other words, the interval [a, b] should be divided into more
subintervals. If we decrease the thickness of the rectangles, we have smaller rectangles because the area of each

rectangle is defined by f(xi) ·∆x where ∆x is given by ∆x =
b− a
n

(n is the number of subintervals). The
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Figure 2: credit: www.indiana.edu/∼rcapub/v22n2/p19.html
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area under the curve is then given by the sum of all of these rectangle and written as follows:

Area = f(x1)∆x+ f(x2)∆x+ · · ·+ f(xn)∆x

This sum is called Riemann Sum for f on [a, b]:

• a left Riemann sum if we use the left end point (Rn)

• a right Riemann sum if we use the right end point (Ln)

• a midpoint Riemann sum if the use the midpoint (Mn)

Definition 1. Regular position. Suppose [a, b] is a closed interval containing n subintervals

[x0, x1], [x1, x2], · · · , [xn−1, xn]

of equal length ∆x =
b− a
n

with a = x0 and b = xn. The endpoints x0, x1, x2, · · · , xn−1, xn of the subintervals

are called grid points, and they create a regular position of the interval [a, b]. In general, the ith grid point
is:

xi = a+ i∆x, for i = 0, 1, 2, · · · , n.

Example 1.1. Left and right Riemann sums. Let R be the region bounded by the graph of f(x) = x2

between x = 1 and x = 3. Estimate the area using 4 approximating rectangles.
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• Right endpoint (R4)
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• Left endpoint (L4)
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• Midpoint (M4)
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Working with Riemann sum is cumbersome with large number of subintervals. So to avoid writing this
Area = f(x1)∆x+ f(x2)∆x+ f(x3)∆x+ f(x4)∆x+ f(x5)∆x+ f(x6)∆x+ f(x7)∆x+ f(x8)∆x+ f(x9)∆x+

· · ·+ f(xn−1)∆x+ f(xn)∆x, there is a way to write it in more compact form.

Area =

n∑
i=1

f(xi)∆x

Example 1.2.

1 + 2 + 3 + 4 + 5 + 6 + 7 =

7∑
i=1

i = 28

0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 =

7∑
i=0

i = 28

4∑
i=0

(i+ 1) = (0 + 1) + (1 + 1) + (2 + 1) + (3 + 1) + (4 + 1) = 1 + 2 + 3 + 4 + 5 = 15

Some properties

Suppose that {a1, a2, a3, · · · , an} and {b1, b2, b3, · · · , bn} are sets of real numbers and c a real number. Then,

•
n∑

i=0

cai = c
n∑

i=0

ai

•
n∑

i=0

(ai + bi) =
n∑

i=0

ai +
n∑

i=0

bi

•
n∑

i=0

(ai − bi) =
n∑

i=0

ai −
n∑

i=0

bi

Some useful sums

Let n be a positive integer and c a real number. Then,

•
n∑

i=1

c = cn

•
n∑

i=1

i =
n(n+ 1)

2

•
n∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6

•
n∑

i=1

i3 =
n2(n+ 1)2

4
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2 Definite Integral

2.1 Net Area
Definition 2. Net Area. Let R be bounded by the graph of the continuous function f and the x−axis
between x = a and x = b. So, the Net Area is given by:

Net Area = The sum of the areas above the x-axis – The sum of the areas below the x-axis
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Definition 3. Generalised Riemann Sum. Suppose that [x0, x1], [x1, x2], · · · , [xn−1, xn] of [a, b] with:

a = x0 < x1 < x2 < · · · < xn−1 < xn = b

Let ∆xk the length of the subinterval [xk−1, xk] and let x∗k be any point in [xk−1, xk], for k = 1, 2, · · · , n

If f is defined on [a, b], the sum:

n∑
k=1

f(x∗k)∆xk = f(x∗1)∆x1 + f(x∗2)∆x2 + · · ·+ f(x∗n)∆xn

is called a general Riemann sum for f on [a, b].

2.2 Definite Integral

Definition 4. A function f defined on [a, b] is integrable on [a, b] if lim
∆x→0

n∑
i=1

f(x∗i )∆xi exists and is unique

over all positions of [a, b] and all choices of x∗i on a partition. This limit is the definite integral of f from a

to b, which we write: ∫ b

a

f(x)dx = lim
∆x→0

n∑
i=1

f(x∗i )∆xi
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Terminology

Example 2.1. Assume that lim
∆x→0

n∑
k=1

(3xk
∗2 + 2x∗k + 1)∆xk is the limit of a Riemann sum for a function f

on [1, 3]. Identify the function f and express the limit as a defined integral. What does the integral represent
geometrically?
solution:

lim
∆x→0

3∑
k=1

(3xk
∗2 + 2x∗k + 1)∆xk =

∫ 3

1

(3x2 + 2x+ 1)dx
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Example 2.2. Evaluating definite integrals using geometry. Use familiar area formulation to evaluate
the following definite integral: ∫ 4

2

(2x+ 3)dx

Here we have a trapezoid, its area is A =
1
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Example 2.3. Evaluating definite integrals using geometry. Use familiar area formulation to evaluate
the following definite integral: ∫ 6

1

(2x− 6)dx

Here 2 triangles, the total area is A = A1 +A2, where A1 =
2× 4

2
= 4 and A2 =

3× 6

2
= 9.
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So A = 9− 4 = 5
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Example 2.4. Evaluating definite integrals using geometry. Use familiar area formulation to evaluate
the following definite integral: ∫ 4

3

√
1− (x− 3)2dx

Here we have a quarter of a disk. Its area is A =
1

4
πr2 =

π

4

1 2 3

1

2

3

4

x

f(x)

Related Exercises sec. 5.1 25–32

2.3 Properties of Definite Integrals

Let f and g be integrable functions on an interval that contains a, b and p.

1.
∫ a

a
f(x)dx = 0 Definition

2.
∫ b

a
f(x)dx = −

∫ a

b
f(x)dx Definition

3.
∫ b

a
(f(x) + g(x))dx =

∫ b

a
f(x)dx+

∫ b

a
g(x)dx

4.
∫ b

a
cf(x)dx = c

∫ b

a
f(x)dx for any constant c

5.
∫ b

a
f(x)dx =

∫ p

a
f(x)dx+

∫ b

p
f(x)dx

6. The function |f | is integrable on [a, b], and
∫ b

a
|f(x)|dx is the sum of the areas of the regions bounded by

the graph of f and the x−axis on [a, b]

Related Exercises sec. 5.2 41–46

2.4 Evaluating Definite Integrals Using Limits

Given a definite integral
∫ b

a
f(x)dx = lim

∆x→0

n∑
i=1

f(x∗i )∆xi.

To express it as a limit of a sum, we compute ∆x =
b− a
n

(here ∆x does not change) and we know that

x∗i = xi = a + i∆x for a Right Riemann Sum (to simplify the calculations). We know, as well, that ∆x → 0

when n→∞. So the evaluation of the integral can be written as follows:∫ b

a

f(x)dx = lim
∆x→0

n∑
i=1

f(x∗i )∆xi = lim
n→∞

n∑
i=1

f(a+ i∆x)∆x = lim
n→∞

n∑
i=1

f(a+ i∆x) · b− a
n
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Example 2.5. Express the following integral as a limit of Riemann Sum:∫ 3

1

ln(x)dx

Solution: First, ∆x is given by ∆x =
3− 1

n
=

2

n
. Then x∗i = xi = a+ i∆x = 1 + i

2

n
. Applying the previous

definition, we express the integral as a Riemann Sum:∫ 3

1

ln(x)dx = lim
n→∞

n∑
i=1

ln(1 + i
2

n
) · 2

n

Example 2.6. Evaluating definite integral using limits. Find the value of the following function by
evaluating a Right Riemann sum and letting n→ 0.∫ 2

0

(x3 + 1)dx

Solution: First, ∆x is given by ∆x =
2− 0

n
=

2

n
. Then x∗i = xi = a+ i∆x = 0 + i

2

n
. Applying the previous

definition, we express the integral as a Riemann Sum:∫ 2

0

(x3 + 1)dx = lim
n→∞

n∑
i=1

((i
2

n
)3 + 1) · 2

n
= lim

n→∞

n∑
i=1

(
8i3

n3
+ 1) · 2

n

= lim
n→∞

(
8

n3

n∑
i=1

i3 +

n∑
i=1

1

)
· 2

n

= lim
n→∞

(
8

n3

n2(n+ 1)2

4
+ n

)
· 2

n

= lim
n→∞

(
4
n2 + 2n+ 1

n2
+ 2

)
∫ 2

0

(x3 + 1)dx = 6
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