Integral Calculus

Daniel Rakotonirina

February 2, 2017

1 Fundamental theorem of Calculus

1.1 Area function

Definition 1. Let f be continuous function, for $t \geqslant a$. The area function for f with left endpoint a is:

$$
A(x)=\int_{a}^{x} f(t) d t
$$

where $x \geqslant a$. The area function gives the net area of the region bounded by the graph of f and the t-axis on the interval $[a, x]$.

Example 1.1. Comparing area functions. The following graph of f has areas at various regions. Let $A(x)=\int_{-3}^{x} f(t) d t$ and $F(x)=\int_{-1}^{x} f(t) d t$ be two area functions for f.

Evaluate the following area functions:

1. $A(-1)$ and $F(-1)$
2. $A(1)$ and $F(1)$
3. $A(3)$ and $F(3)$

Solution:

1. The value of $A(-1)=\int_{-3}^{-1} f(t) d t$ is the net area of the region bounded by the graph of f and the t-axis on the interval $[-3,-1]$. We see $A_{1}=27$. So $A(-1)=-27$

On the over hand, $F(-1)=\int_{-1}^{-1} f(t) d t=0($ Property 1$)$. Notice that $A(-1)-F(-1)=-27$
2. The value of $A(1)=\int_{-3}^{1} f(t) d t$ is found by subtracting the area below the t-axis on $[-3,-1]$ and the area above the t-axis on $[-1,1]$. Therefore, we have $A(1)=10-27=-17$. Similarly, $F(1)$ is the net area of the region bounded by the graph of f and the t-axis on $[-1,1]$. Therefore, $F(1)=10$. Notice that $A(1)-F(1)=-27$.
3. Reasoning as in part (1) and (2), we see that $A(3)=-27+10-27=-44$ and $F(3)=10-27=-17$. As before observe that $A(3)-F(3)=-27$

Example 1.2. Area of a trapezoid. Consider the trapezoid bounded by $f(t)=2 t+3$ and the t-axis from $t=2$ to $t=x . A(x)=\int_{2}^{x}(2 t+3) d t$ gives the area of the trapezoid, for $x \geqslant 2$

1. Evaluate $A(2)$
2. Evaluate $A(5)$
3. Find and graph the area function $y=A(x)$, for $x \geqslant 2$
4. Compare the derivative of A to f.

Solution:

1. By Property $1 A(2)=\int_{2}^{2}(2 t+3) d t=0$
2. $A(5)$ is the area of the trapezoid on the interval $[2,5]$. Using the area formula of a trapezoid, we have:

$$
A(5)=\int_{2}^{5}(2 t+3) d t=\frac{1}{2}(5-2) \cdot(f(2)+f(5))=\frac{1}{2} \cdot 3(7+13)=30
$$

3. Now the endpoint is the variable $x \geqslant 2$. The distance between the parallel sides is $x-2$.

$$
\begin{array}{r}
A(x)=\frac{1}{2}(x-2) \cdot(f(2)+f(x))=\frac{1}{2}(x-2)(7+2 x+3) \\
A(x)=\int_{2}^{x}(2 t+3) d t=x^{2}+3 x-10
\end{array}
$$

4. Differentiating the area function:

$$
A^{\prime}(x)=\frac{d}{d x}\left(x^{2}+3 x-10\right)=2 x+3=f(x)
$$

Therefore $A^{\prime}(x)=f(x)$, or equivalently, the area function A is an antiderivative of f. It is the first part of the Fundamental Theorem of Calculus

First part of the Fundamental Theorem of Calculus

If f is continuous on $[a, b]$ then the area function $A(x)=\int_{a}^{x} f(t) d t$, for $a \leqslant x \leqslant b$ is continuous on $[a, b]$ and differentiable on (a, b). The area function satisfies:

$$
A^{\prime}(x)=\frac{d}{d x} A(x)=\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

Which means that the area function of f is an antiderivative of f on $[a, b]$.

