Integral Calculus

Daniel Rakotonirina

February 6, 2017

1 Fundamental theorem of Calculus

1.1 Area function and definite integrals

Definition 1. Let f be continuous function, for $t \ge a$. The area function for f with left endpoint a is:

$$A(x) = \int_{a}^{x} f(t)dt$$

where $x \ge a$. The area function gives the net area of the region bounded by the graph of f and the t-axis on the interval [a, x].

Example 1.1. Comparing area functions. The following graph of f has areas at various regions. Let $A(x) = \int_{-3}^{x} f(t)dt$ and $F(x) = \int_{-1}^{x} f(t)dt$ be two area functions for f.

Evaluate the following area functions:

- 1. A(-1) and F(-1)
- 2. A(1) and F(1)
- 3. A(3) and F(3)

Solution:

1. The value of $A(-1) = \int_{-3}^{-1} f(t)dt$ is the net area of the region bounded by the graph of f and the t-axis on the interval [-3, -1]. We see $A_1 = 27$. So A(-1) = -27On the over hand, $F(-1) = \int_{-1}^{-1} f(t)dt = 0$ (*Property 1*). Notice that A(-1) - F(-1) = -27

- 2. The value of $A(1) = \int_{-3}^{1} f(t)dt$ is found by subtracting the area below the *t*-axis on [-3, -1] and the area above the *t*-axis on [-1, 1]. Therefore, we have A(1) = 10 27 = -17. Similarly, F(1) is the net area of the region bounded by the graph of f and the *t*-axis on [-1, 1]. Therefore, F(1) = 10. Notice that A(1) F(1) = -27.
- 3. Reasoning as in part (1) and (2), we see that A(3) = -27 + 10 27 = -44 and F(3) = 10 27 = -17. As before observe that A(3) - F(3) = -27

Example 1.2. Area of a trapezoid. Consider the trapezoid bounded by f(t) = 2t + 3 and the *t*-axis from t = 2 to t = x. $A(x) = \int_2^x (2t+3)dt$ gives the area of the trapezoid, for $x \ge 2$

1. Evaluate A(2)

- 2. Evaluate A(5)
- 3. Find and graph the area function y = A(x), for $x \ge 2$
- 4. Compare the derivative of A to f.

Solution:

1. By Property 1 $A(2) = \int_{2}^{2} (2t+3)dt = 0$

2. A(5) is the area of the trapezoid on the interval [2,5]. Using the area formula of a trapezoid, we have:

$$A(5) = \int_{2}^{5} (2t+3)dt = \frac{1}{2}(5-2) \cdot (f(2)+f(5)) = \frac{1}{2} \cdot 3(7+13) = 30$$

3. Now the endpoint is the variable $x \ge 2$. The distance between the parallel sides is x - 2.

$$A(x) = \frac{1}{2}(x-2) \cdot (f(2) + f(x)) = \frac{1}{2}(x-2)(7+2x+3)$$
$$A(x) = \int_{2}^{x} (2t+3)dt = x^{2} + 3x - 10$$

4. Differentiating the area function:

$$A'(x) = \frac{d}{dx}(x^2 + 3x - 10) = 2x + 3 = f(x)$$

Therefore A'(x) = f(x), or equivalently, the area function A is an antiderivative of f. It is the first part of the Fundamental Theorem of Calculus

First part of the Fundamental Theorem of Calculus If f is continuous on [a, b] then the area function $A(x) = \int_a^x f(t)dt$, for $a \le x \le b$ is continuous on [a, b] and differentiable on (a, b). The area function satisfies:

$$A'(x) = \frac{d}{dx}A(x) = \frac{d}{dx}\int_{a}^{x}f(t)dt = f(x)$$

Which means that the area function of f is an antiderivative of f on [a, b].

Relation between A(x) and the antiderivative of f

We know that area function A(x) is an antiderivative of f. Let F(x) be any other antiderivative of f(x) on [a, b]. The relation between A(x) and F(x) is:

$$A(x) = F(x) + c, \quad \text{for } a \leq x \leq b$$

Noting that A(a) = 0, it follows that:

$$A(b) - A(a) = A(b) = [F(b) + c] - [F(a) + c]$$

Thus,

$$A(b) = \int_{a}^{b} f(x)dx = F(b) - F(a) = F(x)\Big|_{a}^{b}$$

It is the second part of the Fundamental Theorem of Calculus

Second part of the Fundamental Theorem of Calculus If f is continuous on [a, b] and F is any antiderivative of f on [a, b], then

$$A(b) = \int_{a}^{b} f(x)dx = F(b) - F(a)$$

Example 1.3. Evaluating definite integrals. Evaluate the following definite integrals using the Fundamental Theorem of Calculus.

$$\int_0^2 (x^2 + 1)dx; \quad \int_0^{\frac{\pi}{2}} 3\sin(x)dx; \quad \int_1^2 (\sqrt{t} - t^2)dx$$

Solutions:

•
$$\int_0^2 (x^2 + 1)dx$$

$$\int_0^2 (x^2 + 1)dx = \int_0^2 x^2 dx + \int_0^2 1dx = \frac{x^3}{3}\Big|_0^2 + x\Big|_0^2$$

$$= \left[\frac{2^3}{3} - \frac{0^3}{3}\right] + [2 - 0] = \frac{8}{3} + 2 = \frac{14}{3}$$

• $\int_0^{\frac{\pi}{2}} 3\sin(x) dx$

$$\int_0^{\frac{\pi}{2}} 3\sin(x)dx = 3\int_0^{\frac{\pi}{2}}\sin(x)dx = -3\cos x \Big|_0^{\frac{\pi}{2}} = -3[\cos(\frac{\pi}{2}) - \cos(0)] = -3(0) + 3(1) = 3$$

• $\int_{0}^{2} (\sqrt{t} - t^{2}) dx$ $\int_{1}^{2} (\sqrt{t} - t^{2}) dt = \int_{1}^{2} \sqrt{t} dt + \int_{1}^{2} t^{2} dt = \frac{2}{3} t^{3/2} \Big|_{1}^{2} + \frac{1}{3} t^{3} \Big|_{1}^{2} = \frac{2}{3} [2^{3/2} - 1^{3/2}] - \frac{1}{3} [2^{3} - 1^{3}]$ $= \frac{2}{3} \sqrt{8} - 3$

Related Exercises sec. 5.3 51-60

1.2 Derivative of Integrals

Using the **Part 1 of the Fundamental Theorem of Calculus**, we can compute the derivative of an integral. (Note that we should use also the chain rule !!!).

In this section, the goal is to get f(x)

Example 1.4. Simplify the following expressions:

$$\frac{d}{dx} \int_1^x (\sqrt{t} - t^2) dt = \sqrt{x} - x^2$$
$$\frac{d}{dx} \int_x^1 3\sin(t) dt = -\frac{d}{dx} \int_1^x 3\sin(t) dt = -3\sin x$$
$$\frac{d}{dx} \int_2^{x^3} \ln(t^2) dt = 3x^2 \ln(x^6)$$

General formula for the derivative of an integral

$$\frac{d}{dx}\int_{h(x)}^{g(x)} f(t)dt = f(g(x)) \cdot g'(x) - f(h(x)) \cdot h'(x)$$

Related Exercises sec. 5.3 61-68