Homework week 2 solutions

Daniel Rakotonirina

January 16, 2017

0.1 Parallel or orthogonal?

Which of these distinct planes are parallel and which are orthogonal? (5 points)

$$
\mathcal{Q}: x-\frac{3}{2} y+3 z=6 \quad \mathcal{R}:-2 x+3 y-6 z=1 \quad \mathcal{S}: 3 x+4 y+z=3
$$

Solution:

- Normal vectors: $\mathbf{n}_{\mathcal{Q}}=\left\langle 2,-\frac{3}{2}, 3\right\rangle, \mathbf{n}_{\mathcal{R}}=\langle-2,3,-6\rangle$ and $\mathbf{n}_{\mathcal{S}}=\langle 3,4,1\rangle$ (1 point)
- $\mathbf{n}_{\mathcal{R}}=-2 \mathbf{n}_{\mathcal{Q}} \Longrightarrow \frac{-2}{1}=\frac{3}{-\frac{3}{2}}=\frac{-6}{3}=-2 \Longrightarrow \mathbf{n}_{\mathcal{R}}$ is parallel to $\mathbf{n}_{\mathcal{Q}}$ (1 point)
- $\mathbf{n}_{\mathcal{Q}} \cdot \mathbf{n}_{\mathcal{S}}=0 \Longrightarrow 1 \cdot 3+\left(-\frac{3}{2}\right) \cdot 4+3 \cdot 1=0 \Longrightarrow \mathbf{n}_{\mathcal{Q}}$ is orthogonal to $\mathbf{n}_{\mathcal{S}}$ (1 point)
- $\mathbf{n}_{\mathcal{R}} \cdot \mathbf{n}_{\mathcal{S}}=0 \Longrightarrow-2 \cdot 3+3 \cdot 4+(-6) \cdot 1=0 \Longrightarrow \mathbf{n}_{\mathcal{R}}$ is orthogonal to $\mathbf{n}_{\mathcal{S}}$ (1 point)
- Since \mathcal{Q} and \mathcal{R} are parallel they are both orthogonal to \mathcal{S} (1 point)

0.2 Traces and Level Curves

Given the function $4 z=x^{2}+\frac{y^{2}}{4}$.
Exercise 0.1. Explain briefly what the shapes of $x y$-trace, $y z$-trace and $x z$-trace of the function $z=f(x, y)$ are, such as line, circles and parabolas. Sketch them. (3 points)

Solution:

First, $z=\frac{x^{2}}{4}+\frac{y^{2}}{16}$

- $x y$-trace: $z=f(x, y)$ has its minimum value at $z=0$. So the $x y$-trace is just a point $(0,0,0)$. (1 point)
- $y z$-trace: $z=\frac{y^{2}}{16}$. It's an equation of a parabola. (1 point)

- $x z$-trace: $z=\frac{x^{2}}{4}$. It's an equation of a parabola. ($\mathbf{1}$ point)

Exercise 0.2. Explain briefly what the shape of the level curves of the function $z=f(x, y)$ is, such as line, circles and parabolas. Sketch the level curves $f(x, y)=z_{0}$ with $z_{0}=1$ and $z_{0}=2$ (2 points)

Solution:

- The level curves are ellipses for which $a<b$. (1 point)
- Figures: the left figure gives the solution for $z_{0}=1$ and $z_{0}=2$. (1 point)

