Homework week 3 solutions

Daniel Rakotonirina

January 24, 2017

1 Implicit differentiation

The function z = f(x, y) obeys:

 $f(x,y) + \sin(f(x,y)) = 2xy(x+1)$

1. Find $\frac{\partial f}{\partial x}(0,0)$ (2 points) 2. Find $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ (2 points)

Solution

1. Find $\frac{\partial f}{\partial x}(0,0)$ Applying $\frac{\partial}{\partial x}$ to $f(x,y) + \sin(f(x,y)) = 2xy(x+1)$ gives: $\frac{\partial f}{\partial x}(x,y) + \frac{\partial f}{\partial x}(x,y)\cos(f(x,y)) = 2y(2x+1)$ (1 point)

Setting x = y = 0, we have:

$$\frac{\partial f}{\partial x}(0,0) + \frac{\partial f}{\partial x}(0,0)\cos(f(0,0)) = \frac{\partial f}{\partial x}(0,0)\left(1 + \cos(f(0,0))\right) = 0$$

Here we have $\frac{\partial f}{\partial x}(0,0) = 0$ (1 point)

2. Find
$$\frac{\partial^2 f}{\partial x \partial y}(0,0)$$

Applying $\frac{\partial}{\partial y}$ to $\frac{\partial f}{\partial x}(x,y) + \frac{\partial f}{\partial x}(x,y)\cos(f(x,y)) = 2y(2x+1)$ gives:
 $\frac{\partial^2 f}{\partial x \partial y}(x,y) + \frac{\partial^2 f}{\partial x \partial y}(x,y)\cos(f(x,y)) - \frac{\partial f}{\partial x}(x,y)\frac{\partial f}{\partial y}(x,y)\sin(f(x,y)) = 2(2x+1)$ (1 point)

Setting x = y = 0, we have:

$$\begin{split} \frac{\partial^2 f}{\partial x \partial y}(0,0) &+ \frac{\partial^2 f}{\partial x \partial y}(0,0) \cos(f(0,0)) - \frac{\partial f}{\partial x}(0,0) \frac{\partial f}{\partial y}(0,0) \sin(f(0,0)) = 2\\ &\frac{\partial^2 f}{\partial x \partial y}(0,0) \left(1 + \cos(f(0,0))\right) = 2 \end{split}$$

We have

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = \frac{2}{1 + \cos(f(0,0))} \quad \text{(1 point)}$$

2 Analysing critical points

Use the second derivative test to classify the critical points of f(x, y) = xy(x - 1)(y + 2). (6 points)

Solution

First derivatives:

$$f_x = (2x - 1)(y^2 + 2y) = 0 \quad (0.5 \text{ point})$$
(1)

$$f_y = (x^2 - x)(2y + 2) = 0$$
 (0.5 point) (2)

Eq. (1) gives: y = 0 or y = -2 or x = 1/2.

- for y = 0, Eq. (2) gives x = 0 or $x = 1 \implies$ critical points (0,0) and (1,0) (0.5 point)
- for y = -2, Eq. (2) gives x = 0 or $x = 1 \Longrightarrow$ critical points (0, -2) and (1, -2) (0.5 point)
- for x = 1/2, Eq. (2) gives $y = -1 \Longrightarrow$ critical point (1/2, 1) (0.5 point)

Second Derivative Test:

 $f_{xx} = 2(y^2 + 2y);$ (0.5 point) $f_{yy} = 2(x^2 - x);$ (0.5 point) $f_{xy} = (2x - 1)(2y + 2)(0.5 \text{ point})$ $D(x, y) = f_{xx}(x, y)f_{yy}(x, y) - (f_{xy}(x, y))^2$

Points	f_{xx}	f_{yy}	$(f_{xy})^2$	D(x,y)	Conclusion
(0, 0)	0	0	-2	-4	Saddle point (0.4 point)
(1, 0)	0	0	2	-4	Saddle point (0.4 point)
(0, -2)	0	0	2	-4	Saddle point (0.4 point)
(1, -2)	0	0	-2	-4	Saddle point (0.4 point)
(1/2, 1)	-2	-1/2	0	1	Loc. max. (0.4 point)

