Homework week 6 solutions

Daniel Rakotonirina

February 20, 2017

1 Riemann Sum (5 marks)

1. Compute the region between the graph of y = 3x - 6 and the x-axis, for $0 \le x \le 6$ Solution: Here the question asks for the sum of the areas A_1 ans A_2

Warning: If you compute the $\int_0^6 (3x-6) dx$ you get the **net area!!!** between the function f and the x-axis (which is equal to $-A_1 + A_2$). So, we have:

$$A_{1} = \int_{0}^{2} -f(x) \, dx = \int_{0}^{2} (6-3x) \, dx = \left[6x - \frac{3}{2}x^{2} \right]_{0}^{2} = 6 \quad (1 \text{ mark})$$
$$A_{2} = \int_{2}^{6} f(x) \, dx = \int_{2}^{6} (3x-6) \, dx = \left[\frac{3}{2}x^{2} - 6x \right]_{2}^{6} = 24 \quad (1 \text{ mark})$$

Answer = 6 + 24 = 30 (0.5 mark)

2. Compute the Midpoint Riemann sum for the function $f(x) = x^2$ on the interval [-5, 5] using n = 10 equal subintervals

Solution: a = -5, b = 5, n = 10. So, $\Delta x = \frac{b-a}{n} = 1$ (0.5 mark) $x_k^* = -5 + \frac{\Delta x}{2} + (k-1)\Delta x = -5 + \frac{1}{2} + k - 1 = -5.5 + k$ (0.5 mark) $M_{10} = f(-4.5)\Delta x + f(-3.5)\Delta x + f(-2.5)\Delta x + f(-1.5)\Delta x + f(-0.5)\Delta x$ $+ f(0.5)\Delta x + f(1.5)\Delta x + f(2.5)\Delta x + f(3.5)\Delta x + f(4.5)\Delta x$ (1 mark) = 20.25 + 12.25 + 6.25 + 2.25 + 0.25 + 0.25 + 2.25 + 6.25 + 12.25 + 20.25 = 82.5

 $M_{10} = 82.5$ (0.5 mark)

2 Substitution or Integration By Parts (1.5 + 1.5 + 2) + 2 bonus

1. Find the derivative $\frac{dF}{dx}$ of the following function:

$$F(x) = \int_{\arctan(x)}^{\ln(x)} (t^2 + 2)dt$$

Do not simplify the answer. Solution: We have that:

$$F(x) = \int_{\arctan(x)}^{0} (t^2 + 1) dt + \int_{0}^{\ln(x)} (t^2 + 1) dt \quad (0.5 \text{ mark})$$
$$= -\int_{0}^{\arctan(x)} (t^2 + 1) dt + \int_{0}^{\ln(x)} (t^2 + 1) dt$$

Using the Fundamental Theorem of Calculus Part I and chain rule, we get:

$$\frac{dF}{dx} = -(\arctan^2(x) + 1)\frac{1}{x+1} + (\ln^2 x + 1)\frac{1}{x} \quad (1 \text{ mark})$$

- 2. Evaluate the following definite integrals:
 - (a) $\int \theta \sec^2 \theta d\theta$

Solution: Here we use Integration by Parts and apply the ILATE rule

$$\int \underbrace{\theta}_{A} \underbrace{\sec^{2} \theta}_{T} d\theta$$
$$u = \theta \quad dv = \sec^{2} \theta d\theta$$
$$du = d\theta \quad v = \tan \theta$$

So,

$$\int \theta \sec^2 \theta d\theta = \theta \tan \theta - \int \tan \theta \ d\theta \quad (0.5 \text{ mark})$$

Now, we need to evaluate $\int \tan \theta \ d\theta$

$$\int \tan\theta \ d\theta = \int \frac{\sin\theta}{\cos\theta} \ d\theta$$

Using substitution $u = \cos \theta$ and $du = -\sin \theta \ d\theta$, we have:

$$\int \tan \theta \, d\theta = \int -\frac{du}{u} \, du = -\ln|u| + c = -\ln|\cos \theta| + c \quad (0.5 \text{ mark})$$

Finally, we have:

$$\int \theta \sec^2 \theta d\theta = \theta \tan \theta - \ln |\cos \theta| + c \quad (0.5 \text{ mark})$$

- (b) $\int \frac{1}{x^2\sqrt{4-x^2}} dx$. Use trigonometric substitution with $x = 2\sin\theta$ and the Pythagorean theorem. Use
 - $\frac{1}{\sin \theta} = \csc \theta$ and all the tables on the lecture notes website. **BONUS (2 marks)**

Solution: Using trigonometric substitution with $x = 2\sin\theta$ and $dx = 2\cos\theta \ d\theta$ we get:

$$\sqrt{4 - x^2} = \sqrt{4 - 4\sin^2 x} = \sqrt{4\cos^2 \theta} = 2\cos\theta$$

The integral becomes:

$$\int \frac{1}{x^2 \sqrt{4 - x^2}} dx = \int \frac{1}{8 \sin^2 \theta \cos \theta} (2 \cos \theta \ d\theta)$$
$$= \frac{1}{4} \int \frac{1}{\sin^2 \theta} \ d\theta = \frac{1}{4} \int \csc^2 \theta \ d\theta$$
$$= -\frac{1}{\cot \theta} + c \quad (1 \text{ mark})$$

Since $x = 2\sin\theta$, we get $\sin\theta = \frac{x}{2}$. which means that in a right-angled triangle, the opposite side of θ is x and the hypotenuse is 2. Using Pythagorean theorem, we get the adjacent side to θ is $\sqrt{4-x^2}$. So, $\cot\theta$ which is the ratio of adjacent side over the opposite side, equals to $\frac{\sqrt{4-x^2}}{x}$. Hence,

$$\int \frac{1}{x^2 \sqrt{4 - x^2}} dx = -\frac{\sqrt{4 - x^2}}{4x} + c \quad (1 \text{ mark})$$

(c) $\int \sin(x) \cos(x) \ln[\sin(x)] dx$

Solution: First, use substitution $t = \sin x$ and $dt = \cos x \, dx$. The integral becomes:

$$\int \sin(x)\cos(x)\ln[\sin(x)]dx = \int t\cos x\ln(t) \ \frac{dt}{\cos x} = \int t\ln t \ dt \quad (0.5 \text{ mark})$$

Now, we use Integration by Parts and the ILATE rule (0.5 mark):

$$u = \ln t \quad dv = tdt$$

$$du = \frac{1}{t} \quad v = \frac{t^2}{2}$$

$$\int t \ln t \, dt = \frac{t^2}{2} \ln t - \int \frac{t^2}{2} \cdot \frac{1}{t} \, dt = \frac{t^2}{2} \ln t - \int \frac{t}{2} \, dt$$

$$= \frac{t^2}{2} \ln t - \frac{1}{2} \frac{t^2}{2} + c = \frac{t^2}{2} \ln t - \frac{1}{4} t^2 + c \quad (0.5 \text{ mark})$$

Now, we put back the value of t to get:

$$\int \sin(x) \cos(x) \ln[\sin(x)] dx = \frac{\sin^2 x}{2} \ln(\sin x) - \frac{1}{4} \sin^2 x + c \quad (0.5 \text{ mark})$$

Please put you student ID and the section number on your homeworks