Integral Calculus

Daniel Rakotonirina

January 4, 2017

Vectors (textbook sec. 11.1-11.2-11.3)

It gives the position of a point in space (from the origin of the reference frame) or quantities that have both length (or magnitude) and direction. It has a Tail and a Head.

0.1 2D space and 3D space

Figure 1: 2D space

Figure 2: 3D space

2 D space (2 components)	3 D space (3 components)
Point	
$(\star, \star): P\left(P_{1}, P_{2}\right)$	$(\star, \star, \star): M\left(M_{1}, M_{2}, M_{3}\right)$
Vector	
$\begin{gathered} \langle\star, \star\rangle \text { or } a \mathbf{i}+b \mathbf{j} \\ \overrightarrow{O P}=\mathbf{p}=\left\langle P_{1}-O_{1}, P_{2}-O_{2}\right\rangle=\left\langle p_{1}, p_{2}\right\rangle \\ \overrightarrow{O P}=\mathbf{p}=p_{1} \mathbf{i}+p_{2} \mathbf{j} \end{gathered}$	$\begin{gathered} \langle\star, \star, \star\rangle \text { or } a \mathbf{i}+b \mathbf{j}+c \mathbf{k} \\ \overrightarrow{O Q}=\mathbf{q}=\left\langle Q_{1}-O_{1}, Q_{2}-O_{2}, Q_{3}-O_{3}\right\rangle=\left\langle q_{1}, q_{2}, q_{3}\right\rangle \\ \overrightarrow{O Q}=\mathbf{q}=q_{1} \mathbf{i}+q_{2} \mathbf{j}+q_{3} \mathbf{k} \end{gathered}$

Example 0.1. $\overrightarrow{O P}=\mathbf{p}=\langle 3-0,1-0\rangle=\langle 3,1\rangle=3 \mathbf{i}+1 \mathbf{j}=3 \mathbf{i}+\mathbf{j}$
Example 0.2. $\overrightarrow{Q M}=\mathbf{u}=\langle 3-(-5), 0-(-5), 5-3\rangle=\langle 8,5,2\rangle=8 \mathbf{i}+5 \mathbf{j}+2 \mathbf{k}$

0.2 Planes

A plane is a flat surface, two-dimensional surface that extends infinitely far. The world has three dimensions, but a plane has two dimensions and spanned by two non parallel vectors.

Related Exercises sec. 11.2 (15-22)

0.3 Operations

0.3.1 Length or magnitude

The length or the magnitude of a given vector $\mathbf{a}=\overrightarrow{A B}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ is:

$$
|\mathbf{a}|=|\overrightarrow{A B}|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}
$$

Related Exercises sec. 11.1 (23-27)

0.3.2 Multiplication by a scalar (number)

Let c a scalar (number) and \mathbf{v} a vector. The resulting vector of the multiplication $\mathbf{o f} \mathbf{v}$ by c is denoted $c \mathbf{v}$. It is called a scalar multiple of \mathbf{v}. If $c>0, c \mathbf{v}$ has the same direction as \mathbf{v}, otherwise it has the opposite direction. The operation is written as follows:

$$
c \cdot \mathbf{v}=\left\langle c \cdot v_{1}, c \cdot v_{2}, c \cdot v_{3}\right\rangle
$$

Example 0.3. $2 \cdot\langle 2,1,-3\rangle=\langle 4,2,-6\rangle$

Note: Two vectors $\mathbf{u}=\left\langle\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \mathbf{u}_{\mathbf{3}}\right\rangle$ and $\mathbf{v}=\left\langle\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\rangle$ are parallel if:

$$
\frac{u_{1}}{v_{1}}=\frac{u_{2}}{v_{2}}=\frac{u_{3}}{v_{3}}=c
$$

Example 0.4. Let $\mathbf{u}=\langle 2,1,-3\rangle$ and $\mathbf{v}=\langle 4,2,-6\rangle$ be two vectors. Determine if their are parallel or not. $\frac{2}{4}=\frac{1}{2}=\frac{-3}{-6}=\frac{1}{2}$. So \mathbf{u} and \mathbf{v} are parallel.

Related Exercises sec. 11.1 (17-20)

0.3.3 Addition and subtraction

Let \mathbf{u} and \mathbf{v} two vectors.

$$
\begin{aligned}
& \mathbf{u}+\mathbf{v}=\left\langle u_{1}+v_{1}, u_{2}+v_{2}, u_{3}+v_{3}\right\rangle \\
& \mathbf{u}-\mathbf{v}=\left\langle u_{1}-v_{1}, u_{2}-v_{2}, u_{3}-v_{3}\right\rangle
\end{aligned}
$$

Related Exercises sec. 11.1 (21-22)

0.3.4 Dot product

Let $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ be two vectors. The dot product is defined as:

$$
\begin{equation*}
\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3} \tag{1}
\end{equation*}
$$

OR

$$
\begin{equation*}
\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}| \cdot|\mathbf{v}| \cos \theta \tag{2}
\end{equation*}
$$

It is a number (or scalar), NOT a vector! Related Exercises sec. 11.3 (15-24)

EQ. (2) gives implicitly the angle θ between \mathbf{u} and \mathbf{v} with $0 \leqslant \theta \leqslant \pi . \theta$ is obtained by:

$$
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| \cdot|\mathbf{v}|} \Longrightarrow \theta=\cos ^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| \cdot|\mathbf{v}|}\right)
$$

Note: Two vectors $\mathbf{u}=\left\langle\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \mathbf{u}_{\mathbf{3}}\right\rangle$ and $\mathbf{v}=\left\langle\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\rangle$ are orthogonal if $\mathbf{u} \cdot \mathbf{v}=0$. From Eq. (2) $\cos \theta=0$, which gives $\theta=\frac{\pi}{2}$. Related Exercises sec. 11.3 (9-14)

Example 0.5. Find the dot product of $\mathbf{u}=\langle 1,3,-2\rangle$ and $\mathbf{v}=\langle 4,-1,0\rangle$.
$\mathbf{u} \cdot \mathbf{v}=1 \cdot 4+3 \cdot(-1)+(-2) \cdot 0=1$
Example 0.6. Compute the angle between $\mathbf{u}=\langle\sqrt{3}, 1,0\rangle$ and $\mathbf{v}=\langle 1, \sqrt{3}, 0\rangle$.

- $\mathbf{u} \cdot \mathbf{v}=\sqrt{3} \cdot 1+1 \cdot \sqrt{3}+0 \cdot 0=2 \sqrt{3}$
- $|\mathbf{u}|=\sqrt{(\sqrt{3})^{2}+1^{2}+0^{2}}=\sqrt{3+1}=\sqrt{4}=2$
- $|\mathbf{v}|=\sqrt{1^{2}+(\sqrt{3})^{2}+0^{2}}=\sqrt{1+3}=\sqrt{4}=2$
- $\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| \cdot|\mathbf{v}|}=\frac{2 \sqrt{3}}{2 \cdot 2}=\frac{\sqrt{3}}{2} \Longrightarrow \theta=\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{6}$

Properties of the dot product
Suppose \mathbf{u}, \mathbf{v} and \mathbf{w} are 3 vectors and let c be a scalar (or a number).
Theorem 1. Commutativity property. $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
Example 0.7. Let $\mathbf{u}=\langle 1,3,-2\rangle$ and $\mathbf{v}=\langle 4,-1,0\rangle$ be two vectors.
$\mathbf{u} \cdot \mathbf{v}=1 \cdot 4+3 \cdot(-1)+(-2) \cdot 0=1$
$\mathbf{v} \cdot \mathbf{u}=4 \cdot 1+(-1) \cdot 3+0 \cdot(-2)=1$
Theorem 2. Associativity property. $c(\mathbf{u} \cdot \mathbf{v})=c \mathbf{u} \cdot \mathbf{v}=\mathbf{u} \cdot c \mathbf{v}$
Example 0.8. Let $\mathbf{u}=\langle 1,3,-2\rangle$ and $\mathbf{v}=\langle 4,-1,0\rangle$ be two vectors.
$2(\mathbf{u} \cdot \mathbf{v})=2(1 \cdot 4+3 \cdot(-1)+(-2) \cdot 0)=2$
$2 \mathbf{u} \cdot \mathbf{v}=\langle 2,6,-4\rangle \cdot\langle 4,-1,0\rangle=2 \cdot 4+6 \cdot(-1)+(-4) \cdot 0=2$
$\mathbf{u} \cdot 2 \mathbf{v}=\langle 1,3,-2\rangle \cdot\langle 8,-2,0\rangle=1 \cdot 8+3 \cdot(-2)+(-2) \cdot 0=2$

Theorem 3. Distributive property. $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$

