Integral Calculus: Homework (due: January 30 before class)

Daniel Rakotonirina

January 27, 2017

1 Absolute Minimum/Maximum (5 points)

Let \mathcal{R} be the triangle whose vertices are $(2,0),(-1,0)$ and $(0,2)$. Find the minimum and maximum values of the following function:

$$
f(x, y)=x^{2}-2 x+y
$$

on the boundary of \mathcal{R}.

2 Lagrange Multipliers (5 points)

A firm produces:

$$
g(x, y)=x^{4 / 3} y^{2 / 3}
$$

units of goods per week, utilizing x units of labour and y units of capital. If labour costs $\$ 27$ per unit, and capital costs $\$ 0.5$ per unit, use the method of Lagrange multiplier to find the most cost-efficient division of labour and capital that the firm can adopt if its goal is to produce 6 units of goods per week. Clearly state the objective function and the constraint. You are not required to justify that the solution you obtained is the absolute maximum. A solution that does not use the method of Lagrange multipliers will receive no credit, even if it is correct.

