Integral Calculus: Homework (due: February 15 before class)

Daniel Rakotonirina

February 11, 2017

1 Riemann Sum

1. Compute the region between the graph of $y=3 x-6$ and the x-axis, for $0 \leqslant x \leqslant 6$
2. Compute the Midpoint Riemann sum for the function $f(x)=x^{2}$ on the interval $[-5,5]$ using $n=10$ equal subintervals

2 Substitution or Integration By Parts

1. Find the derivative $\frac{d F}{d x}$ of the following function:

$$
F(x)=\int_{\arctan (x)}^{\ln (x)}\left(t^{2}+2\right) d t
$$

Do not simplify the answer.
2. Evaluate the following definite integrals:
(a) $\int \theta \sec ^{2} \theta d \theta$
(b) $\int \frac{1}{x^{2} \sqrt{4-x^{2}}} d x$. Use trigonometric substitution with $x=2 \sin \theta$ and the Pythagorean theorem. Use $\frac{1}{\sin \theta}=\csc \theta$ and all the tables on the lecture notes website.
(c) $\int \sin (x) \cos (x) \ln [\sin (x)] d x$

Please put you student ID and the section number on your homeworks

