Midterm 1 MATH 104 section 108

Daniel Rakotonirina

September 27, 2017

First Name: \qquad Last Name: \qquad
Student Number: \qquad

Short Problems

1. Find the value of a and b such that the function $f(x)$ is continuous everywhere.

$$
f(x)= \begin{cases}a x+b & x<0 \\ \frac{2 \cos (x)}{1+2 \cos (x)+\sin (x)} & x \geq 0\end{cases}
$$

Solution:

(a) The continuity of the function $f(x)$ need to be investigated at $x=0$. i.e.

$$
\begin{array}{r}
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=f(0) \\
\lim _{x \rightarrow 0^{-}} a x+b=b \\
\lim _{x \rightarrow 0^{+}} \frac{2 \cos (0)}{1+2 \cos (0)+\sin (0)}=\frac{2}{3} \\
f(0)=b
\end{array}
$$

It gives $b=\frac{2}{3}$.
(b) In order for the derivative $f^{\prime}(x)$ to exist at $x=0$, the limit $\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}$ must exist. In particular the limits $\lim _{h \rightarrow 0^{-}} \frac{f(h)-f(0)}{h}$ and $\lim _{h \rightarrow 0^{+}} \frac{f(h)-f(0)}{h}$ must exist and equal to each other.

$$
\begin{aligned}
\lim _{h \rightarrow 0^{-}} \frac{f(h)-f(0)}{h} & =\lim _{h \rightarrow 0^{-}} \frac{a h+\frac{2}{3}-\frac{2}{3}}{h}=\frac{d}{d x}\left[a x+\frac{2}{3}\right]_{x=0}=a \\
\lim _{h \rightarrow 0^{+}} \frac{f(h)-f(0)}{h} & =\frac{d}{d x}\left[\frac{2 \cos (x)}{1+2 \cos (x)+\sin (x)}\right]_{x=0}=-\frac{-2 \sin (0)+\cos (0)}{(1+2 \cos (0)-\sin (0))^{2}}=-\frac{2}{9}
\end{aligned}
$$

It gives $a=-\frac{2}{9}$
The answer is

$$
f(x)= \begin{cases}-\frac{2}{9} x+\frac{2}{3} & x<0 \\ \frac{2 \cos (x)}{1+2 \cos (x)+\sin (x)} & x \geq 0\end{cases}
$$

2. Evaluate $\lim _{x \rightarrow-1} \frac{\sqrt{x^{2}+8}-3}{x+1}$

Solution:

$$
\begin{aligned}
\frac{\sqrt{x^{2}+8}-3}{x+1} & =\frac{\sqrt{x^{2}+8}-3}{x+1} \cdot \frac{\sqrt{x^{2}+8}+3}{\sqrt{x^{2}+8}+3} \\
& =\frac{\left(x^{2}+8\right)-3^{2}}{(x+1) \sqrt{x^{2}+8}+3} \\
& =\frac{x^{2}-1}{(x+1) \sqrt{x^{2}+8}+3} \\
& =\frac{x-1}{\sqrt{x^{2}+8}+3} \\
\lim _{x \rightarrow-1} \frac{\sqrt{x^{2}+8}-3}{x+1} & =\lim _{x \rightarrow-1} \frac{x-1}{\sqrt{x^{2}+8}+3}=-\frac{1}{3}
\end{aligned}
$$

3. Evaluate $\lim _{t \rightarrow 0} \frac{(t+4)^{2}-16}{(t-5)^{2}-25}$

Solution:

$$
\begin{aligned}
\frac{(t+4)^{2}-16}{(t-5)^{2}-25} & =\frac{(t+4)-4}{(t-5)-5} \cdot \frac{(t+4)+4}{(t-5)+5} \\
& =\frac{t}{t-10} \cdot \frac{t+8}{t} \\
& =\frac{t+8}{t-10} \\
\lim _{t \rightarrow 0} \frac{(t+4)^{2}-16}{(t-5)^{2}-25} & =\lim _{t \rightarrow 0} \frac{t+8}{t-10}=-\frac{4}{5}
\end{aligned}
$$

4. Find the derivative of the following function using the definition of the derivative:

$$
f(x)=2 x^{2}-10 x+5
$$

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2(x+h)^{2}-10(x+h)+5-\left(2 x^{2}-10 x+5\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x^{2}+4 x h+2 h^{2}-10 x-10 h+5-2 x^{2}+10 x-5}{h} \\
& =\lim _{h \rightarrow 0} \frac{4 x h+2 h^{2}-10 h}{h} \\
f^{\prime}(x) & =4 x-10
\end{aligned}
$$

5. Find the derivative of the following function using the definition of the derivative:

$$
f(x)=\frac{x}{x-1}
$$

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{x+h}{x+h-1}-\frac{x}{x-1}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{(x+h)(x-1)}{(x+h-1)(x-1)}-\frac{x(x+h-1)}{(x+h-1)(x-1)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \cdot \frac{x^{2}-x+x h-h-x^{2}-x h+x}{(x+h-1)(x-1)} \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \cdot \frac{-h}{(x+h-1)(x-1)} \\
f^{\prime}(x) & =-\frac{1}{(x-1)^{2}}
\end{aligned}
$$

6. Differentiate the following functions:
(a) $f(x)=\sqrt[3]{\ln x+2 x}$

Solution:

$$
\frac{d f}{d x}=\frac{1}{3}\left(\frac{1}{x}+2\right)(\ln x+2)^{-\frac{2}{3}}
$$

(b) $h(x)=\frac{x^{2}}{e^{x}+x}$

Solution:

$$
\begin{aligned}
\frac{d h}{d x} & =\frac{2 x\left(e^{x}+x\right)-\left(e^{x}+1\right) x^{2}}{\left(e^{x}+x\right)^{2}} \\
& =\frac{2 x e^{x}+2 x^{2}-x^{2} e^{x}-x^{2}}{\left(e^{x}+x\right)^{2}} \\
& =\frac{2 x e^{x}+x^{2}-x^{2} e^{x}}{\left(e^{x}+x\right)^{2}} \\
\frac{d h}{d x} & =\frac{x e^{x}(2-x)+x^{2}}{\left(e^{x}+x\right)^{2}}
\end{aligned}
$$

7. Find the equation of the tangent line with a slope $m=\frac{1}{2}$ for the curve $y=f(x)=\sqrt{1-x^{2}}$ for x in $[-1,1]$.

Solution:

- The derivative at any point x is $f^{\prime}(x)=-\frac{x}{\sqrt{1-x^{2}}}$
- The slope of the tangent line to $f(x)$ at $x=x_{0}$ is $f^{\prime}\left(x_{0}\right)=-\frac{x_{0}}{\sqrt{1-x_{0}^{2}}}$

$$
f^{\prime}\left(x_{0}\right)=-\frac{x_{0}}{\sqrt{1-x_{0}^{2}}}=\frac{1}{2}
$$

It gives:

$$
\begin{aligned}
x_{0}^{2} & =\frac{1}{4}\left(1-x_{0}^{2}\right) \\
x_{0}^{2}\left(1+\frac{1}{4}\right) & =\frac{1}{4} \\
x_{0}^{2} & =\frac{1}{5} \Longrightarrow x_{0}^{2}= \pm \sqrt{\frac{1}{5}}= \pm \frac{\sqrt{5}}{5}
\end{aligned}
$$

Plugging x_{0} into $f(x), y_{0}=\sqrt{1-\frac{1}{5}}=\sqrt{\frac{4}{5}}=\frac{2 \sqrt{5}}{5}$.

- Knowing that the equation of a tangent line is $y=m x+b$. For this case $m=\frac{1}{2}$ and the equation of the tangent line as the form $y=\frac{1}{2} x+b$.
- Plugging $\left(x_{0}, y_{0}\right)$ into the that equation gives:

$$
\frac{2 \sqrt{5}}{5}=\frac{1}{2} \cdot \frac{-\sqrt{5}}{5}+b
$$

Here, we take $x_{0}<0$ for a positive slope. Therefore,

$$
b=\frac{2 \sqrt{5}}{5}+\frac{1}{2} \cdot \frac{\sqrt{5}}{5}=\frac{\sqrt{5}}{2}
$$

The final answer is $y=\frac{1}{2} x+\frac{\sqrt{5}}{2}$

Long Problem

Rowlex is a producer of high quality watches. Let p be the price of a watch (in dollars) and let q be the weekly demand of watches in Vancouver. The owner estimates that the price and demand are related by the following equation:

$$
50 p+20 q=8000
$$

1. If the Rowlex watch costs $100 \$$, how many watches will be sold per week?

Solution:

$$
\begin{aligned}
50(100)+20 q & =8000 \\
20 q & =8000-5000 \\
q & =\frac{3000}{20} \\
q & =150
\end{aligned}
$$

2. Express the price p in terms of the demand q.

Solution:

$$
\begin{aligned}
50 p & =8000-20 q \\
p & =\frac{8000-20 q}{50} \\
p & =160-\frac{2 q}{5}
\end{aligned}
$$

3. Express the revenue R as a function of q.

Solution:

The revenue is given by $R=p \cdot q$

$$
R=q \cdot\left(160-\frac{2 q}{5}\right)
$$

4. The weekly production cost is $500 \$$ to keep Rowlex running plus a variable cost of $10 \$$ per unit watch. Express the Rowlex's weekly profit (P) as a function of q.

Solution:

The profit is given by $P=R(q)-C(q)$

$$
\begin{aligned}
& P=q \cdot\left(160-\frac{2 q}{5}\right)-(500+10 q) \\
& P=-\frac{2 q^{2}}{5}+150 q-500
\end{aligned}
$$

5. How many watches should Rowlex produce in order to maximize its profit? What should be the price of a watch in this case?

Solution:

The maximum profit is given by $\frac{d P}{d q}=0$

$$
\begin{aligned}
\frac{d P}{d q} & =\frac{d}{d q}\left(-\frac{2 q^{2}}{5}+150 q-500\right)=0 \\
& =-\frac{4 q}{5}+150 q=0 \Longrightarrow q=\frac{150 \times 5}{4}=187.5
\end{aligned}
$$

Rowlew should sell 187 watches in order to maximize its profit. The price of a watch is :

$$
p=160-\frac{2(187)}{5}=85.2 \$
$$

