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Equilibrium for vMFN game, with linear demand

This appendix solves the duopoly vMFN game, for the case of linear demand:

• 2 upstream suppliers each decide simultaneously whether or not to impose a vertical

restraint on downstream competitive retailers that requires each retailer to charge no

more for the supplier’s product than for the rival’s product. This is a “vMFN” restraint.

• Then the suppliers set wholesale prices (w1, w2)

• Then retailers set retail prices (p1, p2)

• Retailers have zero costs. If neither supplier imposes the agreement, retailers just set

retail prices equal to wholesale prices.

• If both suppliers set the agreement, retailers set a common retail price, p, equal to the

average of the wholesale prices, (w1 + w2)/2.

For d in (0,1), define the following demand and profit functions:

q1(p1, p2) = 1− p1 + dp2

q2(p2, p2) = 1− p2 + dp1

This is a fully general representation of a symmetric linear demand system since the

parameters other than d in a linear demand function q1(p1, p2) = a − bp1 + dp2 can be

normalized to 1 through the choice of quantity units and currency units.

Profit functions are given by

π1(w1, w2) = q1(p1, p2)w1

π2(w1, w2) = q2(p1, p2)w2

where the retail prices are functions of (w1, w2).

{0,0} pricing subgame:
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This is simply a Bertrand game in which the wholesale prices (w1, w2) are passed through

to the retail prices (p1, p2). That is, for this game: wi = pi, i = 1, 2.

R00
1 (w2) = argmaxw1π1(w1, w2)

and symmetrically for R00
2 (w1).

We can verify by solving first-order condition that

Roo
1 (w2) =

1

2
+
d

2
w2

and similarly for R00
2 .

The (symmetric) equilibrium of this game is w∗
00 defined as the solution in w to

R00
1 (w) = w

We can verify that

w∗
00 =

1

2− d
Define π∗

00 = π1(w
∗
00, w

∗
00). We can verify that

π∗
00 =

1

(2− d)2
(1)

This is the profit both firms get from the {0,0} game.

{1,1} pricing subgame:

For this game, retail prices are p1 = p2 = (w1 + w2)/2.

Define p(w1, w2) = (w1 + w2)/2

Define π11
1 (w1, w2) = q1[p(w1, w2), p(w1, w2)] � w1

Define

R11
1 (w2) = argmaxw1π

11
1 (w1, w2)
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We can verify by solving the first-order condition that

R11
1 (w2) =

1

(1− d)
− w2

2

The equilibrium for this subgame is w∗
11 defined as the solution to

R11
1 (w) = w

We can verify that

w∗
11 =

2

3(1− d)

Define π∗
11 = π1(w

∗
11, w

∗
11). We can verify that

π∗
11 =

2

9(1− d)
(2)

Since the firms continue to compete in prices, rather than quantities, the move to com-

plements in the (1, 1) game is a move (when demand is linear) not just from substitutes

to complements but a move to prices as strategic substitutes. This is in contrast to their

relationship as strategic complements in the (0, 0) game.1

Under the vMFN, the reaction curves are thus downward sloping. In other words, the

greater a rival’s wholesale price (and, therefore, the greater the common retail price), the

less inclined a firm is to raise the common retail price even further through an increase in

its own wholesale price. Figure A1 compares the subgame pricing equilibria of the (0, 0)

Bertrand game and the (1, 1) vMFN game for the case of linear demand.

1Taking the case of linear demand, q1(p1, p2) = 1− p1 + dp2 , the profit function for firm 1 in the (1, 1)
game becomes

π1 = (w1)[1− (1− d)(
w1 + w2

2
)]

From this, ∂2π1/∂w1∂w2 = −(1 − d)/2 < 0 , demonstrating strategic complementarity. The move from
strategic complementarity to strategic substitutes with the vertical restraint is parallel to the same effect in
the duopoly platform competition model of Boik and Corts (2016).
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Figure A1: Reaction Curves for 00 and 11 Duopoly Pricing Subgames

This figure is a useful reference for solving the {1,0} game.

{1, 0} pricing subgame:

This is the pricing subgame following decisions by Player 1 to impose the vMFN and

player 2 to offer a contract without the vMFN. Consider player 1’s reaction function. If

player responds to a price w2 by playing a price w1 < w2 then player 1’s vMFN restraint

is not binding. The players are (locally) in the {0, 0}game. On the other hand, if player 1

responds to w2 by playing w1 > w2 then the restraint is binding, and the fact that player 2

has not imposed vMFN is irrelevant; the game is locally the same as the {1, 1} game.

in fact the game is the same as the {1,1} game in which both players play the

Refering to Figure A1, the equilibrium in this game is the following:

• Player 2 plays the strategy ŵ2 that makes player 1 indifferent between the following

two strategies:

– playing its best response for the {0,0} game, R00
1 (ŵ2), which is less than ŵ2,

earning payoff π1(R
00
1 (ŵ2), ŵ2))

– playing its best response for the {1,1} game, R11
1 (ŵ2), which is greater than ŵ2,

earning payoff π1(R
11
1 (ŵ2), ŵ2))

5



• Player 1 plays the mixed strategy ρ, (1−ρ) between R00
1 (ŵ2) and R11

1 (ŵ2) that makes ŵ2

the best response to the mixed strategy. (One can verify that player 2’s best response

is decreasing in ρ.) This best response condition determines ρ.

• We will use shorthand wa = R00
1 (ŵ2), and wb = R11

1 (ŵ2) (**)

• The proof will make use of numerical calculations; with a single parameter, d, deter-

mining the game it is unnecessary to solve the game algebraically. We next define

various functions recursively, on the basis of variables and functions already defined or

determined.

• Define ŵ2 as the solution in w2 to the following equation

π1(R
00
1 (w2), w2) = π11

1 (R11
1 (w2), w2)

• Given ŵ2, define wa and wb according to (**).

• Define ρ̂ as the solution in ρ to:

ŵ2 = argmaxw2{ρπ2(wa, w2) + (1− ρ)π11
2 (wb, w2)}

All terms in this equation are either a calculated number, or a previously defined

function, except for ρ. So the equation can be solved for ρ.

• We have determined, for any value of the parameter d, the players pricing strategies for

the {1,0} game. Player 1 mixes over strategies wa and wb with probabilities (ρ̂,(1-ρ̂)).

And player 2 plays ŵ2.

• The final step for this subgame is to calculate the payoffs:

π∗
10 = π1(wa, ŵ2)

where we are using the fact that player 1 is indifferent between the two points of

support in its strategy. And for player 2:

π∗
01 = ρ̂π2(wa, ŵ2) + (1− ρ̂)π11

2 (wb, ŵ2)}

The Entire Game

• Having calculated the profits for each subgame, as functions of d, we plot the full set

of payoffs for the pricing in Figure A2: π∗
00, π

∗
10, π

∗
01, π

∗
11.
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• The Figure demonstrates that π∗
10 > π∗

00 and that π∗
11 > π∗

01 . This proves that given

the payoffs from the pricing subgames in the simultaneous choices by the duopolists

{adopt vMFN, do not adopt vMFN}, the strategy of adopting the vMFN is a dominant

strategy.
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Figure A2: Payoffs π∗
00, π

∗
01, π

∗
10, π

∗
11 as functions of d for symmetric linear demand

The fact that the vMFN is an individually dominant strategy leaves open the question

of the impact on firms’ profits of the joint adoption of the vMFN. Does a prisoners’ dilemma

arise, where the individually dominant strategies leave the firms both worse off? Comparing

(1) and (2) we have:

π∗
11 < π∗

00 ⇔
2

9(1− d)
<

1

(2− d)2
⇔ d <

1

2

Thus, when d < 1/2 , so that products are not close substitutes, the individual choices of

vMFN or not yield a prisoner’s dilemma. The intuition is clear for the case of independent

products, d = 0. In this case, the diversion effect is zero so that the non-vMFN profits, π00,

are the collusive profits. The non-vMFN game raises price further because pricing choices

are distorted by the cost-externalization effect.
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