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Abstract

This paper develops a model of agglommeration and regional trade that incorpo-

rates selection over plant productivity. It builds on the structure of Bernard, Eaton,

Jensen, and Kortum (2003), by introducing entrepreneurship and endogenizing produc-

tivity distributions across locations. Two key ingredients of the model are: First that

competition is head-to-head, with multiple �rms competing to sell the same product.

Second, that �rms draw productivity from a �fat-tailed� distribution. We show the

implications for productivity distributions with this structure are very di¤erent than

those of Melitz-style models. In particular, there is no sense that productivity distrib-

utions become more compressed in large markets, as occurs in Melitz-style approaches.

Moveover, in this environment, analysis of productivity distributions of surviving plants

does not distinguish the relative importance of selection from knowledge spillovers in

accounting for high average productivity in agglomerations.
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1 Introduction

Models of �rm heterogeneity that explicitly take into account exit by low productivity �rms

have played a prominent role in the international trade literature. The modeling approach

of Melitz (2003) has been particularly in�uential. The alternative modeling approach of

Eaton and Kortum (2002), and Bernard, Eaton, Jensen Kortum (2003) (hereafter BEJK)

has also had signi�cant impact. Recently, these ideas have been applied to models of regions

rather than countries. Papers, including Baldwin and Okubo (2006), Combes, Duranton,

Gobillon, Puga, and Roux (2009) (hereafter CDGPR), and Behrens, Duranton, and Robert-

Nicoud (2010), follow the approach of Melitz or o¤shoots of Melitz like Melitz and Ottaviano

(2008).

This paper develops a regional analysis that incorporates heterogeneity in productivity,

but in contrast to other papers, it follows the BEJK approach. To understand what we

do, it is �rst necessary to highlight two essential di¤erences between the BEJK and the

Melitz approaches. First, in BEJK, competition between �rms is head-to-head. There is

more than one potential producer of any given product and the di¤erent producers engage in

Bertrand competition, market by market. In contrast, in the Melitz approach each �rm has

a monopoly over a particular di¤erentiated product, as in Dixit and Stiglitz (1977). Second,

in BEJK, �rms draw their productivity distribution from a distribution with a fat right tail.

In contrast, in the Melitz approach, it is not necessary that productivity be drawn from a

fat tail.

This paper takes the two essential ingredients of the BEJK trade model: head-to-head

competition and fat-tailed productivity draws. It adds to this: (1) labor mobility, and (2)

a model of freely-mobile entrepreneurial activity. The end product is a model of selection.

This arises because only one entrepreneur of a given variety at a given location survives the

outcome of head-to-head competition. The end product is also a model of agglomeration

and endogenous productivity distributions, in which productivity and agglomeration are

explicitly linked. This arises from the equilibrium conditions of free mobility of entrepreneurs

and workers, both across locations and across jobs. The main work of the paper is analysis

of the endogenous productivity distributions.

We show that imposing the equilibrium mobility conditions in the BEJK structure has

content. Average productivity is higher in agglomerated areas, a result that does not nec-

essarily hold without free mobility in BEJK. We note that models with mobility conditions

based on the Melitz approach also �nd that productivity is higher in agglomerated areas.

What sharply distinguishes our approach from Melitz-style approaches is what can be

learned from how shapes of productivity distributions vary across locations. A recurring
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theme in the analysis of our model is that productivity varies in a �smooth way� across

locations. Mean productivity may be higher in one location than the other, but the shape

of the distribution doesn�t change. The previous literature based on Melitz-style cuto¤ rules

relies heavily on the fact that, in this class of models, productivity distributions do not vary

in a smooth way. Analysis of productivity data generated in our model turns out to yield

very di¤erent conclusions from what is found in the previous literature.

To explain the point, we start by comparing our results to Syverson (2004), which argues

that because of increased selection, productivity distributions should be more compressed in

large markets. In contrast, in our model, the variance of the level of productivity is actually

larger in large markets. Looking instead at the variance of the log of productivity, it is

constant across locations.

We can highlight the intuition for the divergence in results with a discussion of the case

of a two-point distribution for productivity, low and high. This is a simple example that �ts

Syverson�s case where there is no fat-tail. Small, rural locations will attract few entrants

and so the threshold on productivity needed for survival will tend to be low; i.e. entrants

that draw low productivity may survive. Large, urban locations will attract many entrants

and this high degree of competition will increase the threshold for survival. Perhaps only

high quality �rms survive. The e¤ect of more entry in large markets is to push �rms up

against the upper bound of productivity, compressing the distribution. It should now be

clear why assuming a fat right tail on the productivity distribution changes things. Even

though the increased selection in large locations does indeed weed out low productivity �rms,

there is no force of compression at the top of the distribution. This follows because there

is always plenty room at the top; that is what a fat tail means. The distribution of survivors

shifts up, but is not compressed.

Next we turn to CDGPR, which aims to disentangle the contributions to productiv-

ity of standard agglomeration economies, from those related to increased selection in large

markets. Taking a Melitz-like approach, CDGPR�s basic idea is that standard agglom-

eration economies will shift the entire distribution of productivity smoothly to the right,

while increased selection in larger markets will improve the distribution by more extensively

truncating it on the left, leaving the right portion of the distribution alone. The paper

�nds little evidence of increased truncation in larger markets, leading it to conclude that

the higher average productivity found in larger markets must be mainly due to standard

agglomeration economies.

In our model, changing parameters related to agglomeration and parameters related to

selection both impact the productivity distribution in the same, smooth way. There is no

sense that selection leads to a more truncated distribution. So the fact that empirically
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productivity distributions in bigger cities shift to the right in a smooth way, rather than

through sharper truncation on the left, does not imply that selection is an unimportant

contributor to cross-location di¤erences in productivity. It is crucial for our result that

competition is head-to-head; because of this there is no one uniform �productivity cuto¤�

at a given location. A particular �rm might draw a high productivity level but get knocked

out by a head-to-head rival at the same location that draws an even higher productivity.

Another �rm at the same location might draw low productivity and survive, if its head-to-

head rivals, by chance, draw even lower. These random variations across di¤erent groups of

head-to-head rivals leads the distribution of the survivor productivities aggregated over all

plants at a location to be smooth, rather than truncated.

Last, we compare our results to Hsieh and Klenow (2009). This paper considers the

distortions created by government policies that favor some �rms over others. For example,

suppose low productivity �rms receive subsidies funded by taxes on high productivity �rms.

The strategy of Hsieh and Klenow (2009) is to use information on the variance of produc-

tivities to draw inferences about the extent of such distortions. Their approach works in

the Melitz-style model they develop. Subsidies directed at low productivity �rms reduce

the survival cuto¤ on the left-side of the productivity distribution but leave the right side

of the distribution alone. Analogous to what happens in Syverson as the cuto¤ increases,

economies without such distortions have more compressed productivity distributions.

We consider a particular government policy with a productivity cuto¤where �rms above

the cuto¤ pay a tax (a higher tax, the higher �rm productivity) and �rms below the cuto¤

receive a subsidy (a higher subsidy, the lower �rm productivity). The resulting structure

that we obtain is highly tractable, making it potentially useful for future empirical work on

such distortions. We compare economies that di¤er in the extent of the distortion and show

the distortion lowers average productivity in two ways. First, following the same logic as

in Hsieh and Klenow (2009) and Rustucia and Rogerson (2008), the distortion misallocates

production among a given set of �rms. Second, we show the distortion reduces incentives for

entrepreneurship. There is less entry in an economy with distortions and thus less selection.

While the distortion lowers average productivity, the shape of the productivity distribution

does not change. With the head-to-head competition taking place in our model, even high

productivity �rms can potentially be knocked out by inferior rivals receiving a distortionary

subsidies. Distortions shift the distribution of productivity down throughout its support,

and do not just move the truncation point of a �xed distribution. Put in another way,

distortions do indeed lower mean productivity, but do not manifest themselves through

increasing the dispersion of productivity.

As in BEJK, the Fréchet distribution is put to work extensively throughout this paper.
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The Fréchet is the limiting distribution of the maximum of M independent draws from a

fat-tailed distribution. In our model, there are many head-to-head competitors for each

product, each with independent draws, and that is how we motivate going from a fat-tailed

distribution to the Fréchet.1 Tomotivate our use of a fat-tailed distribution for the underlying

productivity draw, we note that these are quite common in the literature. In particular,

Melitz and Ottaviano (2008), Chaney (2008), and Eaton, Kortum, and Kramarz (2008) all

assume a Pareto distribution for underlying draws, the proto-typical example of a fat-tailed

distribution.

The rest of the paper is organized as follows. Section 2 describes the model and the

assumption on productivity draws. Section 3 studies the equilibrium given individuals�

location and job choices. Section 4 studies job and location choices and determine when

agglomeration arises. Section 5 studies equilibrium productivity distributions of survivors

and the survival rates across locations. To study the impact of selection and agglomeration

on productivity distribution separately, this section also develops a pure agglomeration model

in which selection is completely shut down and compare this model with a case of our model

in which the standard agglomeration economies are shut down. Section 6 studies the impact

of policy distortion. Section 7 concludes.

2 Model

2.1 Description of the Model

There are two locations, i = 1; 2, that are ex ante identical. In the equilibrium of the model,

it may happen that one location attracts more people than the other. We label things in

such cases so that location 1 is the �big city�and location 2 is the �small city.�

All agents have the same preferences for a composite goodQ and land L; these preferences

are represented by the utility function

U(Q;L) = Q�L1��:

The composite is an aggregation of di¤erentiated goods indexed by j on the unit interval.

It follows the standard CES form,

Q =

�Z 1

0

(q(j))
��1
� dj

� �
��1

;

1Kortum (1997) motivates Fréchet by treating �rms as getting many multple draws over time for the
same �rm. This is analogous to the maximum of many draws from di¤erent �rms at a point in time.
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where � is the elasticity of substitution. We note that in setting up land as the force of

dispersion, we are following the modeling approach in Helpman (1998). Redding and Sturm

(2008) is a recent paper that calibrates a quantitative application of the Helpman (1998)

approach and they interpret L broadly as a "nontradeable amenity."

There is a �xed supply of land (or nontradeable amenity) equal to �L at each location.

Analogous to what Redding and Sturm do, we assume the rents on the land at a particular

location are distributed equally in a lump sum fashion among the population who lives at

the location.

There is a measure �H individuals in the economy. Individuals �rst choose whether to

live and work in city 1 or live and work in city 2. Next, they choose whether to be an

entrepreneur or to be employed as a worker. Let Ni be the number of individuals choosing

to be a worker in city i and let Mi be the number of entrepreneurs. Let Hi = Ni +Mi. The

resource constraint implies that

N1 +M1 +N2 +M2 = �H:

It will be convenient to work with fractions. De�ne these by

ni =
Ni
�H
; mi =

Mi

�H
; hi =

Hi
�H
= ni +mi:

We now explain the process through which �rms are created and productivities are de-

termined, beginning with the arrival of Mi entrepreneurs at location i. Each entrepreneur

picks a product j 2 [0; 1] to attempt to enter. Let Si(j) be the density of entrepreneurs
attempting to enter product j (the number of startups for this product). All entrepreneurs

arriving at i pick some industry; i.e.,

Mi =

Z 1

0

Si(j)dj.

Each entrepreneur entering an industry obtains a plant. The productivity of a plant has

two components that enter multiplicatively. First, there is a term Ai that is constant across

all plants at location i and depends on the amount of knowledge spillovers. If there are Hi
individuals located at i, then

Ai = H
�
i :

The parameter � governs the signi�cance of agglomeration spillovers. In particular, if � = 0,

then Ai = 1 and there are no spillovers. Second, there is a random term y to productivity

that depends upon the entrepreneur�s luck. An entrepreneur at location i with productivity
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y for a particular good j can produce Aiy units of good j, per unit of labor procured at

location i.

We assume an iceberg transportation cost � between the two locations. To deliver one

unit of any di¤erentiated good j to a di¤erent location, � � 1 units must be shipped.
There are three stages in the model. In stage 1, individuals choose where to live and

what job to hold.

In stage 2, Mi entrepreneurs at location i allocate themselves across the product space

j 2 [0; 1] so that Si(j) is the density choosing good j. Each of the Si(j) entering product j
at i obtains a single plant, with one draw of the random productivity term y. We impose

as an equilibrium condition that the returns to entering each product j at a location are be

equalized. We ignore integer constraints

In stage 3, the S1(j) plants at location 1 and the S2(j) plants at location 2 engage in

Bertrand price competition for the product j market at each location. At the same time

there is market clearing in the labor markets and land markets.

2.2 Distribution of Productivities

We turn now to our crucial assumption about the distribution of productivity draws. Let

Y denote the random variable that is being drawn to determine productivity and let G(y) :

[0;1)! [0; 1] be its distribution function. (We refer the distribution by either Y or G(:):)

As background for our assumption on G(:), imagine taking M independent draws from G(:)

and selecting out the maximum, the extreme value. The Fisher-Tippet theorem states that

when M goes to in�nity, the distribution of a properly normalized maximum converges to

one of the three type of limiting distributions.2 We make

Assumption 1 Y is in the class of distributions for which the limiting distribution of the

normalized maximum is Fréchet (Type 2 extreme value distribution), that is, Y falls in the

domain of attraction for Fréchet.

The Fréchet distribution function on [0;1) has the form of

e��y
��
; (1)

where � is the scale parameter and � is the shape parameter.

Any distribution that falls in the domain of attraction for Fréchet is fat-tailed, i.e., its

density declines at slower than an exponential rate. A distribution G(:) is in the domain of

2See Embrechts et al. (1997) for a textbook treatment of Fisher-Tippet Theorem.
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attraction for Fréchet if and only if it has a � > 0 such that for any constant t > 0,

lim
x!1

1�G(tx)
1�G(x) = t

��: (2)

This implies that the smaller the �; the slower the tail diminishes, and hence the fatter the

tail. This tail parameter � of G(:) actually becomes the shape parameter of its limiting

distribution. The Pareto is the best known example of a distribution in this domain of

attraction. We add a restriction that � > 2; because this paper is concerned not only with

the mean, but also the variance of the productivity distribution, and the Fréchet distribution

has �nite variance if and only if � > 2:

3 Equilibrium for Fixed Location and Job Choices

This section works out the equilibrium in stages 2 and 3, given the fractions (n1;m1; n2;m2)

of individuals in the di¤erent jobs and locations determined in stage 1. The contribution

of this section is to show that for �xed (n1;m1; n2;m2), our model maps directly into the

international trade model of BEJK. This is an asymptotic result that applies as the size �H

of the economy gets large. We show this mapping and then go directly to BEJK to collect

various formulas derived there that we later use.

We begin by analyzing expected pro�t of being a startup at location i; for a particular

product j; as a function of the number of startup plants S1(j) and S2(j) at each location.

Denote this as vi(S1; S2), leaving implicit the dependence of S1 and S2 on j. Conditional

on the number of startup plants S1 and S2 at each location, the expected return vi(S1; S2)

to being one of the startups does not depend upon j because of symmetry. It does depend

upon the location i because demand may di¤er across locations (because of transportation

costs) and because the wage and e¤ective labor productivity may di¤er. Given a set of

productivity draws for the S1 and S2 startups, the startups play a Bertrand price game at

each location and the startup with the lowest delivered cost to serve each location wins, with

a price equal to the minimum of the simple monopoly price and the second lowest delivered

cost. The return vi(S1; S2) takes the expectation over the S1 and S2 productivity draws and

combines the expected pro�t of serving both markets.

We impose the equilibrium condition for stage 2 that the return to entrepreneurial entry

at a particular location i be equalized across products j, i.e.,

vi(S1(j); S2(j)) = constant i for all j 2 [0; 1]. (3)
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Our characterization of equilibrium builds on the following lemma.

Lemma 1 (i) The expected return vi(S1; S2) to an entrepreneur for entering a particular

product at i is strictly decreasing in the levels of entry S1 and S2 at the two locations for

the product. (ii) Assume productivity draws are from the Fréchet given by (1). Suppose for

(S1; S2) and (S 01; S
0
2) that S1 < S

0
1; S1 > S

0
1; and v2(S1; S2) = v2(S

0
1; S

0
2). Then v1(S1; S2) >

v1(S
0
1; S

0
2).

Proof. Proof of (i). Take as given a particular set of productivity draws for S1 and S2
startups at 1 and 2. Standard Bertrand competition arguments imply that if we add an

additional startup to either location, the original S1 and S2 startups are weakly worse o¤.

As the distribution of productivity is unbounded on the right, with positive probability the

new startup displaces the original startups. Hence, in expectation the original startups

are strictly worse o¤ from additional entry. That is, vi(S1; S2) decreases in S1 and S2, as

claimed. Proof of (ii). See the Appendix.

That result of part (i)� that the return to entry decreases in the total level of entry�

is straightforward. The result of part (ii) is more complex. Suppose that the expected

return to entry at location 2 were the same for two di¤erent entry patterns, (S1; S2) and

(S 01; S
0
2). To maintain indi¤erence, there must be a tradeo¤; i.e., if one pattern has less

entry at location 1, this must be o¤set more entry at location 2. The result says that if an

entrant at location 2 is indi¤erent between such a tradeo¤, an entrant at location 1 would

strictly prefer the alternative with less entry at location 1. This is intuitive, because we

expect that entrants will value reductions in entry at their own locations more than entrants

at the other locations would value them. While this is an intuitive result, we are only able

to formally prove it for the case where the underlying draws are from the Fréchet.

We use Lemma 1 to show that in stage 2 when entrepreneurs pick products they spread

themselves out evenly of the available unit measure of goods, i.e.,

Si(j) =Mi. (4)

To see this is an equilibrium, observe that an entrant at 1 gets v1(M1;M2) in the �spread out�

equilibrium given by (4). If an entrant at 1 deviates from the �spread out�and �overloads�

a particular product, the entrant gets v1(M1 + 1;M2) which is strictly worse, according to

Part (i) of Lemma 1. Part (ii) of Lemma 1 implies that the �spread out�equilibrium is the

unique equilibrium when the underlying draws are Fréchet. Suppose to the contrary we

have an equilibrium where things are not evenly spread out, i.e., there is a j and j0 such that

S1(j) < S1(j
0). Indi¤erence across j and j0 at location 2 implies S2(j) > S2(j0). But then
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Part (ii) of Lemma 1 along with the Fréchet assumption implies at location 1 the return

to choosing product j is greater than the return to product j0, contradicting equilibrium

condition (3). Without the Fréchet assumption, we don�t have a formal proof that the

spread out equilibrium is the unique equilibrium. That being said, we have no reason to

suspect other equilibria exist in the general case. We focus on the spread out equilibrium

given by (4) in what follows.

Thus for each product j, there are Si(j) =Mi plants. Only the one drawing the highest

productivity in equilibrium will potentially produce in equilibrium. We will be interested

then, in the distribution of the maximum productivity over the Mi draws, and, as we will

see, the distribution of the second highest draw.

Formally, let bZ1i � maxfy1; y2; :::; yMi
g

be the maximum over the productivity draws for theMi startups, where these are i:i:d: draws

from G(:). Analogously, let bZ2i be the second highest. The e¤ective labor productivities

of the highest and second highest productivity startups equal Ai bZ1i and Ai bZ2i, where again
the adjustment factor Ai depends upon knowledge spillovers, Ai = H

�
i .

We determine the limiting distribution when �H is large of the two highest productivity

startups. If we hold �xed the underlying distribution G(:) per draw and take �H and hence

Mi o¤ to in�nity, of course the highest productivity among the Mi draws goes o¤ to in�nity.

Thus, for our asymptotic result, we rescale bZ1i and bZ2i to let the limiting distribution be
independent of �H. This rescaling amounts to changing the unit of productivity as �H gets

large. In particular, for each �H; we select an � �H such that

Z1i = � �HAi bZ1i; Z2i = � �HAi bZ2i. (5)

In order to de�ne the rescaling factor � �H , some simple notions of regular variation are

needed.3

De�nition 1 A measurable, positive function g(:) is regularly varying if there exists a � 2 R
such that for any t > 0;

lim
x!1

g(tx)

g(x)
= t�:

When � = 0; then g(:) is said to be slowly varying.

The Fisher-Tippet theorem (Theorem. 3.2.3 in Embrechts et al. [1997]) and the further

details about the domain of attraction for Fréchet (Thm 3.3.7 in Embrechts et al. [1997])

3See the Appendix of Embrechts et al. (1997) for a quick treatment of regular variation.
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imply that if Z1 is the maximum among M draws from G(:), for G(:) in the domain of

attraction for Fréchet, then

lim
M!1

Pr
�
c�1M Z1 < z

�
= e�z

��
; (6)

where the normalizing constant cM =
�
1=G

��1
(M); andG(:) = 1�G(:) is the tail probability.

In fact, G(:) being in the domain of attraction for Fréchet is equivalent to G(:) being

regularly varying; see (2). This implies that the normalizing constants cM form a regularly-

varying sequence, i.e.,

cM =M1=�`(M); (7)

for some slowly varying function `(:): Thus, for each G(:); there exists some slowly varying

`(:); and we now de�ne the rescaling factor as

� �H = �H���1=�`( �H): (8)

Lemma 2 Given Si(j) = Mi = mi
�H; for any given j and for each �H; let Z1i and Z2i be

rescaled highest and second highest productivity from Mi draws de�ned by (5) and (8). We

have

(i) As �H goes to in�nity, the distribution function of Z1i converges pointwise to

Fi(z) = e
�Tiz�� ; (9)

with scaling parameter

Ti = h
��
i mi: (10)

The joint distribution function of rescaled highest and second highest productivity Z1i
and Z2i converges pointwise to

Fi(z1; z2) = [1 + Ti(z
��
2 � z��1 )]e�Tiz

��
2 ; (11)

for 0 � z1 � z2:

(ii) If the distribution G(:) is Fréchet given by (1), then (9) and (11) hold exactly for any

value of �H.

Proof. See the Appendix.
Lemmas 1 and 2 deliver the key result of this section that once the location choices and

job choices are determined, our model reduces to BEJK.
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Proposition 1 Our model beginning at stage 2 when the fractions (n1;m1; n2;m2) are deter-

mined maps into BEJK for any value of �H if the underlying productivity draws are Fréchet.

For more general underlying distributions satisfying Assumption 1, it maps into BEJK as-

ymptotically as �H is large.

We now describe how the cost and price distributions are determined in BEJK and then

collect several useful results from BEJK that we use.

For good j and for k = 1; 2; the unit cost of supplying to consumers in location n by the

kth most e¢ cient producers located in i is given by

Ckni(j) =

�
wi

Zki(j)

�
�ni;

where �ni = 1 if n = i; �ni = � if n 6= i; and the Z1i(j) and Z2i(j) are random variables

whose joint distribution is given by from (11). The producer that actually serves market n

has unit cost C1n(j) = minifC1ni(j)g, and the second lowest cost supplying to market n is
C2n(j) = minfC2ni�(j);mini6=i�fC1ni(j)gg; where i� is the region with the lowest cost supplier
to n. Bertrand competition implies that the producer with C1n(j) charges C2n(j), and hence

the markup is C2n(j)=C2n(j). However, due to the CES utility, there is an upper bound of

the markup, as no �rm charges a higher markup than the monopoly markup � = �=(�� 1);
for � > 1: (For � � 1; � = 1). Hence, Pn(j) = minfC2n(j); �C1n(j)g. From (9) and (11),

BEJK derive that the joint distribution function of the lowest cost C1n and the second lowest

cost C2n is

Kn(c1; c2) = 1� e��nc
�
1 � �nc�1e��nc

�
2 ; (12)

where

�n =
2X
i=1

Ti(wi�ni)
��: (13)

This parameter �n =
P2

i=1 Ti(wi�ni)
�� distills the parameters of productivity distributions,

wages, and the trade cost into one single term governing the cost and price distributions.

The price distribution at location n is given by

Kn(p) = 1�
�
1 + �n(1� ���)p�

�
e��np

�

:

The BEJK�s analytical results that are useful for our paper are listed as follows.

BEJK Result 1 The probability that location i provides a good at the lowest price in
location n is

�ni =
Ti(wi�ni)

��P2
k=1 Tk(wk�nk)

��
=
Ti(wi�ni)

��

�n
:
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BEJK Result 2 In any location n, the probability of buying a good with price lower than
p is independent from where the good is purchased from. Letting Xni be the total

expenditure of location n on the goods from i, and Xn be the total expenditure, we

have

Xni = �niXn:

BEJK Result 3 Assume that �+1 > �. Let � denote the gamma function; the price index
is

Pn = [
1 + � � � + (� � 1)���

1 + � � � �

�
� + 1� �

�

�
]

1
1���

� 1
�

n

� ��
1
�

n :

BEJK Result 4 A fraction �=(1 + �) of revenue goes to variable cost.

Finally, we note that since trade between locations 1 and 2 is balanced, total expenditure

Xn on goods at n is the same as total revenues of plants located at n.

4 Equilibrium Location and Job Choices

This section derives parameter restrictions under which there is agglomeration. We need

to cover this ground in order to set up the analysis of next section where we compare how

productivity varies with agglomeration. This is a well-studied topic in the New Economic

Geography (NEG) literature. See, for example, the models by Krugman (1991), and Ot-

taviano, Tabuchi, and Thisse (2002). In particular, the way we use land as the force of

dispersion is the same as in Helpman (1998). We replicate some of the simulation results in

Helpman (1998) with an analytic characterization.

We begin by looking at job choice. Let wi be the wage at i and vi the expected pro�t

of being an entrepreneur. Since the share of revenues going to workers and entrepreneurs

is �=(1 + �) and 1= (1 + �), and since there are Ni and Mi of each, the returns to each job

equal

wi =
�

1 + �

Xi

Ni
; (14)

vi =
1

1 + �

Xi

Mi

:

Free mobility between the two jobs implies that wi = vi, which implies a constant ratio
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between workers and entrepreneurs in each location i; that is,

Ni
Mi

=
ni
mi

= �: (15)

We can use this result to rewrite the Fréchet scale parameter from equation (10) for the

distribution of the maximum productivity plant at i as

Ti = h
��
i mi = (1 + �)

��m��+1
i : (16)

Since the utility is Cobb-Douglas in goods and land, the indirect utility for an individual

choosing to locate at i given composite goods price Pi; land rental Ri; and wage i equals

Ui =

�
1� �
�

�1��
P��i R

�(1��)
i wi. (17)

Total expenditures on the �L units of land at i must equal the land expenditure share times

the total income at i,

Ri �L = (1� �)[Ri �L+ (Ni +Mi)wi].

solving for the rent Ri and substituting this into utility (17) yields

Ui = 

�
wi
Pi

�� �
1

Ni +Mi

�1��
: (18)

where  is constant across the two locations.

For a �xed value of the population shares h1 (and hence �xed h2 = 1�h1), we can impose
the equilibrium condition for job choice (15) and we can solve for the w1, w2, P1 and P2 that

are consistent with equilibrium in the output market. Plug these into (18) and let ~Ui(h1)

be the utility conditioned on h1. Let u(h1) = ~U1(h1)= ~U2(h1) be the ratio of utilities. For an

interior value h1 2 (0; 1) to be an equilibrium of location choice, it must be that u(h1) = 1.
As is standard in this literature, a symmetric equilibrium always exists at h�1 = 0:5, where

half of the individuals go to each location. Given symmetry, we can restrict attention to

the range h1 � 1
2
where location 1 is weakly larger than location 2. An equilibrium with

h�1 > 0:5 is called an agglomeration equilibrium. If u(1) � 1, then h�1 = 1 is an equilibrium
where everyone goes to location 1. Call this a black-hole equilibrium. De�ne an interior

equilibrium h�1 2 [12 ; 1) as stable if du=dh1 < 0 at h
�
1 and unstable if du=dh1 > 0. Proposition

2 shows that depending on the parameters, there are three possibilities for how things can

look. Figure 1 illustrates the three cases, showing how the utility ratio u depends upon the
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share h1.4

0.5 1
f

1

u
a Stable Symmetric Equilibrium

0.5 1
f

1

u
b Interior Agglomeration Equililibrium

0.5 1
f

1

u
c Black hole Equilibrium

Figure 1: Characterization

Proposition 2 De�ne two thresholds for � as a function of other model parameters,

�̂L �
1�

� + 1 + 1
�

� � �(1 + 2�) + 1
� �(1 + 2�)� 1 ; �̂H =

1 + �

1 + � + ��
.

(i) The parameter space f(�; � ; �; �) : � 2 (0; 1); � > 1; � > 1; � � 0g can be partitioned
into the the following three subspaces each of which is associated with a distinct char-

acterization of equilibria.

(a) When � � �̂L, the symmetric equilibrium is stable and the only equilibrium.

(b) When � > �̂L; the symmetric equilibrium is unstable, and there exists a unique

agglomeration equilibrium and it is stable. If � 2 (�̂L; �̂H) the agglomeration
equilibrium is interior, h�1 2 (0:5; 1), and if � � �̂H ; the agglomeration is a black-
hole, h�1 = 1:

(ii) If there is an interior agglomeration equilibrium h�1 2 (0:5; 1), then h�1 increases in �,
� , and �.

Proof. See the Appendix.
As shown in Helpman (1998), agglomeration increases with the weight � placed on goods

consumption relative to land consumption and with the transportation cost � . That ag-

glomeration increases with the knowledge spillover parameter � is a standard �nding.

Henceforth, assume the condition for an interior agglomeration holds so that there is

agglomeration at location 1 but still there is some economic activity at location 2 that can

be compared with location 1.
4The parameters for (a) (stable symmetric equilibrium) is � = 0:7; � = 1:7; � = 1:5; ! = 0:5; � = 0:7:

For (b) (interior agglomeration equilibrium) � = 0:6; � = 1:7; � = 1:5; ! = 1:5; � = 0:3 For (c) (black-hole
equilibrium), � = 0:6; � = 1:7; � = 1:5; ! = 3; � = 0:7:
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5 Productivity and Agglomeration

This section analyzes the distribution of productivities of surviving plants at the two loca-

tions. The �rst part derives the implications of the equilibrium conditions of worker and

entrepreneurial choice. The conditions imply that the distribution of productivity is higher

in the large city compared to the small city. The second part compares the observed produc-

tivity distributions to those generated in a pure agglomeration model where selection over

productivity is shut down. The analysis shows it is impossible to distinguish these two cases

with data on observed productivity distributions. The analysis also shows that it matters to

distinguish the two cases� the two cases di¤er fundamentally in their underlying economics.

5.1 The Productivity Distribution is Higher in the Large City

We begin by deriving two equations from the equilibrium conditions. Recall that �i de�ned

in (13) is the summary statistic that pins down the distribution of prices at location i,

gathering together all the various forces including the productivity distributions at each

location. De�ne � � �1=�2 as the ratio of this key statistic between the large and small

cities and analogously de�ne h � h1=h2 to be the ratio of population shares. We derive

two conditions linking � and h. One equation uses indi¤erence between wage work and

entrepreneurship; the other uses indi¤erence about where to live.

Using BEJK Results 1 and 2, expenditure by location 1 on goods from location 2 equals

X12 = X1T2 (w2�)
�� =�1. Using the analogous expression for X21 and the market clearing

condition X12 = X21 implies

X1

X2

=
T1w

��
1 �1

T2w
��
2 �2

=
m��+1
1

m��+1
2

w���,

where we substitute in equation (16) Ti = (1 + �)��m
��+1
i for the productivity distribution

scaling parameter and we let w � w1=w2 be the wage ratio. The equilibrium job choice

condition (15) implies n1=n2 = m1=m2 = h. Also, wh = X1=X2 (equation (14)). Plugging

these in gives

w1+� = h���. (19)

Next we use the de�nition (13) of �i to obtain

� =
�1
�2
=
T1w

��
1 + T2w

��
2 �

��

T1w
��
1 �

�� + T2w
��
2

=
h��+1w�� + ���

h��+1w����� + 1
;

where again we use the job choice equilibrium condition to substitute in h form1=m2. Solving
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this expression for w and substituting into (19) yields our �rst equation linking h and �,

h��+�+1 =

�
�� ���
1� ����

�1+�
��. (20)

To derive the second equation in h and �, we use the indi¤erence condition from the

individual�s choice of where to live. This implies that the ratio of utilities u(h1) = 1 for an

interior equilibrium, h�1 < 1, i.e.,

1 =
U1
U2
=

�
w1
P1

��
(N1 +M1)

�(1��)�
w2
P2

��
(N2 +M2)

�(1��)

= w��
�
� h�(1��).

Using (19) to substitute in for w, we obtain our second equation

h(1��)(1+�)���� = ��(1+2�)=�. (21)

With the derivation of conditions (20) and (21) complete, we can now analyze productiv-

ity and selection. If a plant for a particular product j at location i survives, it is necessarily

the most e¢ cient plant for product j at i. As derived in Section 3, the distribution of the

most e¢ cient plant at i for a given j is Fréchet, with density fi(z) = Ti�z���1e�Tiz
��
, where

Ti and � are the scaling and shape parameters. In addition, for the plant to survive, its

cost must be lower than what it would cost the most e¢ cient plant at the other location to

export. Recalling our notation that Z1i is the productivity of the most e¢ cient plant at i,

then the most e¢ cient �rm at location 1 survives if and only if

w1
Z11

<
w2�

Z12
:

We can use this to calculate the productivity distribution of the most e¢ cient plant at

location 1, conditioned on beating the competitors from location 2,

Pr(Z11 � z; Z11 > w1
w2�
Z12)

Pr(Z11 > w1
w2�
Z12)

=
1

�11
Pr(Z11 � z; Z11 >

w1
w2�

Z12),

=
1

�11

Z z

0

Z w2�
w1

z11

0

f1(z11)f2(z12)dz12dz11;

= e�(w
�
1�1)z�� :

Thus the productivity distribution of surviving plants at 1 is Fréchet with shape parameter
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�, and scaling parameter equal to

bT1 = w�1�1

= T1 + T2

�
w2�

w1

���
: (22)

The selection induced by competition with the other location increases the scaling from T1

to a higher level bT1; i.e., it shifts the distribution to the right. Similarly, the productivity

distribution of survivors in location 2 has scale parameter bT2 = w�2�2, but otherwise has

the same shape parameter �. Therefore, the surviving plants at location 1 have a higher

distribution than the survivors at 2 (in the sense of �rst-order stochastic dominance) ifbT1 > bT2. Our result is
Proposition 3 Suppose there is an agglomeration at location 1 (the large city), i.e., h > 1.

(i) The productivity distributions of survivors are Fréchet at both locations with the same

shape parameter �, but the scaling parameter bT1 = w�1�1 at location 1 is strictly higher
than the scaling parameter bT2 = w�2�2 at location 2.

(ii) The ratio of the mean productivities of the survivors equals

E [Z1jsurvive]
E [Z2jsurvive]

=
w1
P1
w2
P2

= h
1��
� (23)

which is strictly greater than one. The variance of the productivity distribution of

survivors is higher at the large city.

(iii) The mean of the logarithm of survivors�productivities is higher in the large city, while

the variance of log productivity is constant across the two locations.

Proof. Proof of (i). We need to show that bT1=bT2 = w�� > 1. This equals
w�� = h(

��
1+� )��

�
1+��

= h
(1��)�

� > 1 (24)

To obtain the �rst line, we substitute in for w using (19). To obtain the second line, we

solve out (21) for � in terms of h and substitute in. Proof of (ii). For the Fréchet with

scaling parameter T , the mean and variance equal T 1=�� ((� � 1)=�) and T 2=�[� ((� � 2)=�)�
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�2 ((� � 1)=�)]. Hence, using (24),

E [Z1jsurvive]
E [Z2jsurvive]

=

 bT1bT2
! 1

�

= w�1=� =
w1
P1
w2
P2

= h
(1��)
� ,

which is greater than 1. That variance is higher in the big city follows from the formula

for variance. Proof of (iii). Note that the log of a Fréchet random variable becomes

Gumbel, for which the distribution function is given by e�bTie��y ; and the variance is given
by �2=(6�2); a constant independent of bTi: The mean of log productivity distribution in i, of
course, increases when bTi increases.
Proposition 3 uses the equilibrium conditions for where entrepreneurs and workers locate

to show that the productivity distribution is strictly higher in the large city. The shape of

the distribution is the same in the two cities and the variance of log productivity is identical

across the two cities. In the introduction, we discussed Sverson�s idea of looking for a

compressed productivity distribution in large cities as evidence of the role of selection in

productivity. Proposition 3 shows the idea does not work in this environment. In levels, the

variance of productivity is actually higher in the large city. With a fat-tailed distribution,

there is no sense that productivities get compressed against some upper bound on the right

side of the distribution. With head-to-head competition, there is no common productivity

threshold on the left-side of the distribution. Thus the productivity bene�ts of the large

city manifest themselves in a smooth way.

There are two forces determining productivity in this model: knowledge spillovers and

selection. Recall the productivity of a �rm is Aiy. The knowledge spillover term Ai = H
�
i

will be strictly larger in the large city if � > 0. The variable y is the random productivity

draw component and its average value at a location will depend upon how tough selection

is at the location.

Recall that there is a measure Mi of entrepreneurs who start plants location i, each

getting one draw of y from G(�). Of these, the measure that survive equals �ii. As stated
in BEJK Result 1, �ii is the fraction of goods that location i sells to itself. (If a plant is

not the lowest cost producer at its home location, it won�t be the lowest cost producer at

the other location either.) Hence, the survival rate for startups at location i equals

survival i =
�ii
Mi

.

Our result is

Proposition 4 (Survival rates) At an agglomeration equilibrium, the survival rate is lower
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in the large city than in the small city if and only if

� <
1� �
�

:

Proof. The ratio of survival rates equals

survival1
survival2

=
�11
�22

M2

M1

=
T1
T2
w����1h�1

=
h��+1h�1

w��
=

h��

h
(1��)�

�

.

The second line uses the formulas for �ii and that M1=M2 = h. The third line �rst

substitutes in Ti = (1 + �)��m
��+1
i and then substitutes in for w�� using (24). The claim

follows directly.

When the spillover parameter � is positive but not too big, there are two forces contribut-

ing to why plants tend to have high productivity in large cities. Not only is Ai higher, but

also the random component y tends to be higher, since there is a lower chance of survival

per unit draw of y. When � is large, the survival rate is actually higher in the large city. It

is intuitive that when the labor market spillover is signi�cant enough, a given low random

draw of y in the large city will be able to beat a given high random draw of y in the small

city. We note there are a variety of other models where survival rates are lower in large

cities, including Asplund and Nocke (2006), Nocke (2006), Campbell (2010).

5.2 Shutting Down Selection: Does it Look Di¤erent and Does it

Matter?

We highlight the role of selection in our model by contrasting a version of model in which

spillovers are shut down with a pure agglomeration model in which selection is completely

shut down. While the economics of the pure agglomeration model is di¤erent, the two

models look the same in terms of observed productivity distributions.

The key assumption of the pure agglomeration model is that there is a monopoly en-

trepreneur for each product j 2 [0; 1] rather than free entry and head-to-head competition.
Each of the unit measure of entrepreneurs chooses where to locate. After the location

decision is �xed, each entrepreneur draws a random productivity term y from the Fréchet

with scale parameter T b and shape parameter �b. (We use the superscript �b�to denote

parameters of the pure agglomeration model.) There are a unit measure of workers that
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also choose where to live. The productivity of an entrepreneur at i drawing y equals Aiy,

where Ai = h
�b

i , for spillover parameter �
b. To complete the model, let �b be the elasticity

of substitution for the composite utility function, let � b be the transportation cost, and �b

be the goods share of utility.

The pure agglomeration model is exactly the Helpman NEG model with two exceptions.

The �rst exception is a �xed set of monopolist over a �xed variety of products, rather than

the usual free entry with �xed costs. This makes no di¤erence for what we do. The second

exception is that productivity is random rather than deterministic. The makes no di¤erence

in deriving the equilibrium, as the integral involving the expectation of productivity draws

factors out. (It does make a di¤erence in the data as it will generate a Fréchet distribution of

productivities.) Using our earlier notations on fractions, we will show in the proof below that

m1=m2 = h1=h2 = h in equilibrium. Thus, �xing h, the model is standard Dixit-Stlitz such

that a �rm at i drawing y sets price equal to a constant markup over cost, pi(y) = �bwi
�b�1=Aiy.

We compare the pure agglomeration model to a version of our model in which knowledge

spillovers are shut down. We will refer to this as the selection model, with parameters

(�s; � s; �s), and spillover �s = 0. First, we draw a connection between the way equilibria

look in the selection and pure agglomeration models.

Proposition 5 Let the parameters (�s; � s; �s) = (�b; � b; �b) � (�; � ; �): In the selection

model, let �s = 0. Let �b = �s + 1 = � + 1. Then,

(i) An equilibrium population ratio h� in the selection model is also an equilibrium h� in

the pure agglomeration model.

(ii) When the knowledge spillover parameter equals

�b =
1� �
�

;

the distribution of productivities of producing plants at each location is the same in

both the selection and pure agglomeration models with proper choice of T b:

Proof. Proof of (i). In the pure agglomeration model, standard Dixit-Stiglitz result is that
the price at each location is a markup over the marginal cost, i.e., pi = �

��1wi:The price of

a good produced at i sold to k is then pki = � kipi: Standard arguments show that the price

index at location k equals

Pi =

 X
i=1;2

mip
1��
ki

! 1
1��

:
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Note that wi = vi no longer holds for the pure agglomeration model. However, observe that,

using (17), we must have

Un1 � P
�
1 R

�(1��)
1 w1 = P

�
2 R

�(1��)
2 w2 � Un2 :

Similar equation Um1 = Um2 for entrepreneurs holds with wi replaced by entrepreneurs�ex-

pected payo¤ vi: These imply that w1=w2 = v1=v2: As in other Dixit-Stiglitz type models, a

fraction 1=�b of revenue goes to �rms/entrepreneurs and (�b � 1)=�b of the revenue goes to
variable costs. This implies that

wi =
�b � 1
�b

Xi

ni
;

vi =
1

�b
Xi

mi

:

The last two equations with the fact that w1=w2 = v1=v2 implies that m1=m2 = n1=n2, and

hence m1=m2 = h1=h2 = h; a result that also holds true in the selection model. On the other

hand, using (16) with �s = 0; we see that Ti = mi in the selection model. Hence, with a

rede�nition of � = �b�1; the price indices of the two models are the same, given the same h.
Hence, at the same h in both models, P��1 =P��2 = �1=�2 � � will be also the same. As we
have shown earlier that the equilibrium conditions can be reduced to two equations linking

h and �; i.e., (20) and (21), it is easy to follow the same procedure to verify that these

two conditions also determine equilibria for the pure agglomeration model. Therefore, an

equilibrium h� in the selection model must be also an equilibrium in the pure agglomeration

model.

Proof of (ii). In the pure agglomeration model, the cumulative distribution function of

productivity in location i is given by

Pr[Aiy � z] = e�T
bA�i z

��
= e�2

��bT bm��b

i z�� :

Hence, the productivity distribution at location i is Fréchet with shape parameter � and

scaling parameter

T bi = 2
��bT bm��b

i :

Using (24) and that �b = 1��
�
; it is immediate to see that

bT s1bT s2 = T b1
T b2
= h�

(1��)�
�
:
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Thus, the ratio of means of two locations is the same in both models. With a proper choice

of T b; the productivity distribution at each location is the same in both models.

In the pure agglomeration model all productivity gains in the large city are due to knowl-

edge spillovers. In the selection model (our model with �s = 0), all productivity gains in the

large city are due to increased selection. Yet through a suitable choice of the � parameter

for the pure agglomeration model, the data generated by the models regarding agglomera-

tion and productivity distributions are exactly the same. In this respect, the models are

observationally equivalent.

While these models look similar in the data they generate, the underlying economics are

di¤erent and optimal policy is di¤erent. We illustrate this by considering the welfare impacts

of a zoning policy that permits production only at location 1, i.e., suppose h1 = 1 and h2 = 0

are mandated by policy. (See Rossi-Hansberg (2004), for example.) The di¤ering impacts

of zoning in the two models are put in sharp contrast by an analysis of the limiting case

where there is no transportation cost.

Proposition 6 Assume � = 1. The equilibrium outcome is the same in both models, equal

dispersion across the two locations, h1 = h2 = 1
2
. However, the welfare e¤ect of the zoning

policy di¤ers across the two models. The zoning policy strictly decreases aggregate utility in

the selection model for any value of the model parameters. In the pure agglomeration model,

zoning increases aggregate utility if and only if

�b >
1� �
�

.

Proof. That the zoning policy reduces aggregate utility in the selection model is immediate.
In the pure agglomeration model, if h1 and h2 are the population fractions then aggregate

utility equals

U b =
�
h1+�

b

1

��
L1�� +

�
h1+�

b

2

��
L1��

To see this, observe that if hi locate at i, then goods production there equals h
1+�b

i , taking

account of the knowledge spillover. Straightforward calculations show that if �b > 1��
�
, this

is maximized at h1 = 1 and h2 = 0, while if �
b < 1��

�
, this is maximized at h1 = h2 = 0:5.

The economics of this result is clear. In the selection model, when transportation costs

are zero, it is not socially useful to concentrate production at location 1 because it creates

congestion (the land at 2 is �wasted�) with no bene�t. In the pure agglomeration model,

the cost of the congestion from the policy is o¤set by the gain of the knowledge spillovers

and the policy can raise welfare. Agents in the pure agglomeration model do not internalize

the externality of the spillover.
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Let us now bring all the ideas of this subsection together. Imagine we have a data

generating process that is either the pure agglomeration model or the selection model, we

don�t know which. Suppose we observe transportation cost and it is initially positive, � > 1,

and we have an agglomeration at location 1. We observe the productivity distribution in both

cities and see that it is higher at location 1, but, as we know from Proposition 5, access to the

micro data doesn�t help distinguish between the two models. Suppose transportation costs

fall to zero, i.e., �new = 1. Both models have the same prediction for equilibrium comparative

statics: agglomeration disappears and we move to an equal split of population. However,

the policy implications are very di¤erent in the two models. If selection is the true source

of the productivity gains in the large city, then a zoning policy at the new transportation

cost strictly decreases welfare. In contrast, if the source is knowledge spillovers, the policy

is welfare neutral. (From Proposition 5, �b = 1��
�
, and this value is the borderline case for

welfare in Proposition 6.)

We can now follow up the discussion in the introduction of applying the idea in CDGPR

to distinguish selection from spillovers. The idea is to look for truncation on the left as

evidence of selection and any smooth overall rightward shift as evidence of spillovers. In their

empirical analysis, CDGPR �nd little evidence of any kind of increased truncation in large

cities. Rather they �nd productivity distributions shift to the right in a relatively smooth

way. They conclude that spillovers must be what drives productivity gains. However, in

our model, the pattern they document in the data is equally consistent with all productivity

gains being due to selection and none being due to spillovers. As shown in Proposition 5,

�Selection with No Spillover�and �Spillover with No Selection�generate the same kind of

productivity data, shifting the distribution to the right in a smooth way in large cities.

Proposition 5 is related to a recent paper, Arkolakis, Costinot, and Rodriguez-Clare

(2010), that argues that adding �rm heterogeneity in either a Melitz or BEJK fashion does

not add anything new in terms of aggregate impacts beyond what is already in the Dixit-

Stiglitz symmetric �rm model. They show these di¤erent models of international trade are

equivalent at the aggregate level. The equivalence result between Dixit-Stiglitz and BEJK

appears here as well. As noted above, the pure agglomeration model is essentially Helpman

(1998), which is Dixit-Stigliz. The pure agglomeration model looks the same (with the same

comparative statics from a change in transportation cost �) as the selection model, which is

BEJK in its underlying moving parts. While the connections noted by Arkolakis, Costinot,

and Rodriguez-Clare (2010) show up here as well, the bottom line point that we get in our

regional model with mobile labor and entrepreneurship is quite di¤erent from what they

get in their trade model with �xed factors. The welfare e¤ects of policies that impact the

movement of factors of production do depend upon the underlying model. Whether it is
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the pure agglomeration or the selection model matters.

Finally, while the pure agglomeration and selection models are the same in their implica-

tions for the productivity distributions of producing plants, they may be di¤erent in terms

of other variables that are potentially observable. Firm survival rates and how these vary

across locations is an example.

6 The Impact of Distortion

Hsieh and Klenow (2009) and Rustucia and Rogerson (2008) are recent papers that connect

policy distortions to aggregate productivity. In particular, suppose that successful �rms

are penalized through high taxes and unsuccessful �rms are rewarded through subsidies.

These policies will cause production to be misallocated across �rms. As discussed in the

introduction, Hsieh and Klenow (2009) propose using data on productivity distributions

to infer the extent of such distortions. Adopting a Melitz-type modeling environment,

they argue that these kinds of policies increase the dispersion of productivity, in addition

to dragging down average productivity. The purpose of this section is to analyze the

implications of such policies for productivity distributions in our model, where note again

that the distinguishing features of our model are its head-to-head competition and fat-tails

for underlying productivity draws.

The tax and subsidy scheme we consider takes a particular parametric form. A �rm pays

a tax or subsidy that depends upon its productivity. Speci�cally, a �rm with productivity

z makes a transfer to the government of

t(z) =
�z
�z

��
� 1 (25)

per unit of labor employed by the �rm, for parameters � 2 (0; 1) and �z > 0: The slope with
respect to z is positive,

t0(z) = �z�(1��)�z�� > 0:

The payment is denominated in units of labor. The parameter �z is the cuto¤ separating

who pays taxes and who receives subsidies. A �rm with z > �z, pays a tax (t(z) positive)

that is higher the higher z. A �rm with z < �z receives a subsidy (t(z) negative) that is

higher (more negative) the lower is z. We assume the cuto¤ �z is such that tax revenues

are su¢ cient to o¤set the subsidies. Any excess of tax revenues over subsidy payments is

destroyed, with free disposal. Finally, note that in the limiting case where � = 0, t(z) = 0

for all z and there is no distortion. So the parameter � governs the extent of distortion.

While the functional form of the tax/subsidy scheme (25) is special, we think it is an
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interesting one to consider because (1) it is clear example of a policy that punishes success

and rewards failure and (2) it yields a tractable formulation in which we are able to obtain

a stark result.

To explain why the speci�cation is tractable, we �rst note that a �rm with productivity

z incurs a cost per unit of output in labor units of

1

z
[1 + t(z)] =

1

z(1��)�z�
,

including the transfer to the government. Hence, from the �rm�s perspective, it behaves as

though it has a productivity of

~z = �z�z1��:

We will refer to ~z as perceived productivity.

For simplicity, this section focuses on the symmetric equilibrium where the locations have

equal population shares. Let m = m1 = m2 be the share becoming entrepreneurs at each

location; let n = n1 = n2 be the share becoming workers at each location. These shares sum

to one, 2m + 2n = 1. It is convenient to start the analysis by taking m and n as �xed.

That is, we initially work out the equilibrium under the tax/subsidy scheme with m and n

exogenous. Following equation (16), the scaling parameter for the Fréchet distribution of

the highest actual productivity Z1i at location i equals

T = m,

where we have set the knowledge spillover parameter � = 0 because it is irrelevant when

both locations have the same size. We also drop the subscript i because in the symmetric

equilibrium the distribution is the same at both locations. The scaling parameter of the

Fréchet increases proportionately with the amount of entrepreneurial entry m. Again, the

shape parameter is �.

To determine equilibrium, we need to calculate the distribution of the highest level of

perceived productivity at a given location i, eZ1i = �z�iZ
1��
1i , as this level is what is relevant

for �rms�decision making. This distribution is

Pr[ eZ1i < ez] = Pr[Z1i < �z ��
1�� ez 1

1�� ] = e�T �z
��
1�� ez� �

1��
:
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Thus, if we de�ne

~� � �=(1� �);eT � T �z�
~�;

we see that the distribution of the highest perceived productivity at a given location is also

Fréchet, with shape parameter ~� and scale parameter ~T . It should now be clear why the

choice of the tax/subsidy scheme (25) is tractable. It retains the Fréchet structure for

perceived productivities. Hence, the analysis of equilibrium maps into BEJK like before,

only with transformed parameters are ~� and ~T . Note that since 1 � � < 1, ~� > �. This

means that the perceived productivities are less dispersed than the actual productivities.

The tax/subsidy scheme �attens things out. We can see that this is going to make selection

play a smaller role in equilibrium.

Again, for a �rm to survive, a �rm not only has to be the best at its own location� it

needs to beat the best from the other location. Using (22), the distribution of perceived

productivity of survivors is Fréchet, with scale parameter given by

beT = eT �1 + ��~�� = T �z�~� �1 + ��~�� (26)

and shape parameter ~�. Here we make use of the fact that with symmetry the ratio of wages

between locations equals one, so this term drops out in (26).

With the distribution of perceived productivities of survivors in hand, we can now convert

perceived to actual to determine the distribution of actual productivities. This is

Pr[Z1i < zjsurvival] = Pr[
 eZ1i
�z�

! 1
1��

< zjs]

= e�
beT �z��~�z�(1��)~�

Thus, using (26) the distribution is Fréchet with shape parameter b~� = � and scale parameter

bT = beT �z��~� = T �1 + ���=(1��)� . (27)

The crucial result here is that varying the tax/subsidy scheme through changes in the pa-

rameter � has no impact on the shape parameter � governing the distribution of surviving

�rms. It does impact the scale parameter. It is immediate in (27) that increasing distor-

tions through increasing � reduces the scale parameter Ts for surviving �rms. Note that
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this e¤ect is more pronounced the bigger the transportation cost � . In fact, in the limiting

case � = 1 with no transportation costs the e¤ect of b drops out. With no transportation

cost only the most e¢ cient �rm of a given good across the two locations survives. The

tax/subsidy scheme �attens things out but it is still better to draw higher productivity as

the advantage of higher productivity more than o¤sets the higher tax. The distortions kick

in when transportation costs matter. In a free market, an ine¢ cient �rm at a particular

location might be knocked out by the best �rm at the other location. But with the help of

a subsidy added to its transportation cost advantage, it might be able to survive in its home

location.

The analysis so far has taken as �xed the population share m entering entrepreneurship.

We now allow this to be endogenous. Using our earlier results (equation (15)), the share

of the work force that enters entrepreneurship is 1=(1 + ~�), noting that the relevant shape

parameter here is for the perceived distribution of productivity. As each location gets half

of the entrepreneurs, we have

m =
1

2

1

1 + ~�
=
1

2

1

1 + �
1��
.

We see that the greater the distortion through a higher level of �, the lower the entrepre-

neurship rate. The distortion weakens the role of selection, diminishing the importance of

entrepreneurship, making it a less attractive option in equilibrium. We conclude that the

distortion decreases average productivity for two reasons. First, �xing the level of entrepre-

neurship, it induces ine¢ cient �rms that would otherwise exit to �hang on�and produce for

their local market. Second, it reduces entrepreneurship.

Now consider economies that are identical except that they vary in the parameter � of

the tax/subsidy scheme, with � = 0 corresponding to the free market and higher � implying

more distortion. The analysis of this section has shown that varying � makes no di¤erence

in the resulting shape parameter � for surviving �rms�productivities. Hence, the variance

of log productivity is constant across �, using the argument in Proposition 3. Increasing

distortions by increasing � does lower average productivity. In summary, we have shown.

Proposition 7 In the symmetric equilibrium given tax/scheme parameter b, the distribution
of productivity for surviving �rms is Fréchet with scale parameter

bT = 1

2

1

1 + �
1��

�
1 + ���=(1��)

�
,

which strictly decreases as � increases (and distortions are increased). The shape parameter

does not vary with �, so the variance of log productivity does not depend upon �.
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We conclude that a strategy of using the dispersion of productivity to infer the extent of

distortions does not work in this model.

7 Conclusion

This paper shows how the BEJK model of international trade can be embedded into a model

of agglomeration and regional trade. The paper puts the model to work analyzing produc-

tivity distributions. In a nutshell, the paper shows how two economic factors shift around

mean plant productivities, while leaving intact the shapes of the productivity distributions.

In particular, the equilibrium conditions of entrepreneurial and labor mobility imply that

mean productivity is higher in agglomerated areas. And, tax/subsidy policies that punish

success and reward failure lower average productivity. Yet, neither factor changes the vari-

ance of log productivity. The results suggest strategies in the literature the rely on shapes

of productivity distributions for identi�cation do not work in this modeling structure.

For ease of exposition, we have focused on a simple, two location model. It is straight-

forward to generalize the model to allow for many heterogeneous locations with a rich trans-

portation cost structure. Such a model can potentially be put to work in quantitative

analysis, analogous to the way Redding and Sturm (2008) put the Helpman (1998) model

to work on accounting for the population distribution in Germany. We expect that data on

plant exit rates and how these vary across locations are likely to be particularly useful here.

Directly measuring the selection taken place through plant exit can potentially shed much

light on the importance of selection in determining productivity.

28



References

Arkolakis, C., A. Costinot, and A. Rodriguez-Clare (2010), �New trade models, same old

gains? ,�NBER Working Paper No. w15628.

Arnold, B. C., N. Balakrishnan, and H. N. Nagaraja (1992), A First Course in Order Sta-

tistics, New York: John Wiley & Sons.

Asplund, M. and V. Nocke, �Firm turnover in imperfectly competitive markets,�Review of

Economic Studies (2006) 73, 295�327.

Baldwin, R. E. and T. Okubo (2006), �Heterogeneous �rms, agglomeration and economic

geography: spatial selection and sorting,�Journal of Economic Geography, 6(3): 323-346.

Behrens, K., G. Duranton, and F. Robert-Nicoud (2010), �Productive cities: Sorting, selec-

tion, and agglomeration,�working paper, University of Toronto.

Bernard, A. B., J. Eaton, J. B. Jensen and S. Kortum (2003), �Plants and productivity in

international trade,�American Economic Review, 93(4): 1268-1290.

Campbell, J. R. (2010), �Competition in large markets,�Journal of Applied Econometrics,

??

Chaney, T. (2008), �Distorted Gravity: the Intensive and Extensive Margins of International

Trade,�American Economic Review, 98(4): 1707-1721.

Combes, P.-P., G. Duranton, L. Gobillon, D. Puga, and S. Roux (2009), �The productivity

advantages of large cities: Distinguishing agglomeration from �rm selection,�working

paper, University of Toronto.

Dixit, A. K. and J. E. Stiglitz (1977), �Monopolistic competition and optimum product

diversity,�American Economic Review, 67(3): 297-308.

Duranton, G. and D. Puga (2001), �Nursery cities: Urban diversity, process innovation, and

the life cycle of products,�American Economic Review, Vol. 91, No. 5 (Dec., 2001), pp.

1454-1477.

Eaton, J., and S. Kortum (2002), �Technology, geography, and trade,�Econometrica, 70(5):

1741-1779.

Eaton, J., S. Kortum, and F. Kramarz (2008), �An anatomy of international trade: Evidence

from French �rms,�NBER Working Paper No. 14610.

Embrechts, P., C. Kluppelberg, and T. Mikosch (1997), Modelling Extremal Events for In-

surance and Finance, Berlin: Springer-Verlag.

Fujita, M., P. Krugman and A. J. Venables (1999), The Spatial Economy: Cities, Regions,

and International Trade, The MIT Press.

29



Helpman, E. (1998), �The size of regions,�in D.Pines, E.Sadka and Y.Zilcha (eds.), Topics

in Public Economics, pp. 33-54, New York: Cambridge University Press.

Hsieh, C.-T. and P. J. Klenow (2009), �Misallocation and aanufacturing TFP in China and

India,�Quarterly Journal of Economics, 124(4): 1403-1448.

Kortum, S. (1997), �Research, patenting, and technological change,�Econometrica, 65(6):

1389-1419.

Krugman, P. (1991), �Increasing returns and economic geography,�Journal of Political Econ-

omy, 99(3): 483-499.

Melitz, Marc J. (2003), �The impact of trade on intra-industry reallocations and aggregate

industry productivity,�Econometrica, 71(6): 1695-1725.

Melitz, Marc J. and G. Ottaviano (2008), �Market size, trade, and productivity,�Review of

Economic Studies, 75(1): 295-316.

Nocke, V. (2006), �A gap for me: Entrepreneurs and entry,�Journal of the European Eco-

nomic Association, Sept 2006, 4(5):929-959.

Ottaviano, G., T. Tabuchi and J.-F. Thisse (2002), �Agglomeration and trade revisited,�

International Economic Review, 43(2): 409-435.

Redding, S. and D. Sturm (2008), "The costs of remoteness: Evidence from German division

and reuni�cation" American Economic Review, 98(5): 1766-1797.

Restuccia, D. and R. Rogerson, �Policy distortions and aggregate productivity with hetero-

geneous plants,�Review of Economic Dynamics, 11 (2008), 707�720.

Rossi-Hansberg, E. (2004), �Optimal urban land use and zoning,�Review of Economic Dy-

namics, 7, 69-106, 707�720.

Syverson, C. (2004), �Market structure and productivity: A concrete example,�Journal of

Political Economy, 112(6): 1181-1222.

30



Appendix

Proof of Part (ii) of Lemma 1.

For each good j; the number of draws from G(:) is the number of entrepreneurs that enter j;

Si(j): To simplify notations, we now leave out j and Si (S 0i) is understood as Si(j) (Si(j
0)):We

want to show that if (a) S1 < S
0
1, (b) S2 > S

0
2, and (c) v2(S1; S2) = v2(S

0
1; S

0
2) all hold and

transportation cost is strictly positive (� > 1), then v1(S1; S2) > v1(S 01; S
0
2).

When G(:) is Fréchet, i.e., (1), then the distribution function of the best productivity is

exactly e��Si ; and the joint distribution of the top two highest productivity is exactly that

given in (11) with Ti = �Si: Without loss of generality, let � = 1: Take the wage of the

e¤ective labor units ewi = wi=Ai = wi=H�
i as the input price in location i (see equation [??]),

then the pricing behavior and the cost and price distributions for each good j will be exactly

the same as in BEJK, now with Ti(j) = Si(j):

We �rst need to derive the expression of the expected pro�t v1(S1; S2) and v2(S1; S2): First

note thatK1ni(c) � Pr[C1ni � c] = Pr[Z1i � ewi�ni
c
] = 1�e�Si( ewi�ni)��c� : Then, note that given

C1ni = c; the probability that the i�s �rm with the best e¢ ciency for any particular good will

open a business in n is
Q
k 6=i[1�K1nk(c)]. Let the event that C1ni = c and C1nk � c; 8k 6= i

be denoted as Bi(c). It can be veri�ed that Pr[C2ni � pjC1ni = c] = e�Si( ewi�ni)��(p��c�) is a
result of (12). Then,

K2njBi(c)(p) � Pr[C2n � pjBi(c)]
= 1� Pr[C2n > pjBi(c)]

= 1�
Pr[C2ni � pjC1ni = c]

Q
k 6=i[1�K1nk(p)]Q

k 6=i[1�K1nk(c)]

= 1�
e�Si( ewi�ni)��(p��c�)Qk 6=i e

�[
P
k 6=i Si(�nk ewk)��]p�Q

k 6=i e
�[
P
k 6=i Si(�nk ewk)��]c�

= 1� e��n(p��c�);

where �n =
P2

i=1 Si( ewi�ni)��: Now, observe that every entrepreneur has 1=Si chance of
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being the best producer in location i, and hence

vi =
1

Si

Z 1

0

2X
n=1

Y
k 6=i

[1�K1nk(c)]

Z �c

c

(p� c) Xn

P��n
p��dK2njBi(c)(p)dK1ni(c) +

1

Si

Z 1

0

2X
n=1

Y
k 6=i

[1�K1nk(c)]

Z 1

�c

(�c� c) Xn

P��n
(�c)��dK2njBi(c)(p)dK1ni(c);

= �2
2X
n=1

Xn

P��n
( ~wi�ni)

���n

Z 1

0

Z �c

c

c��1(p� c)p����1e��np�dpdc+

�(�1�� � ���)
2X
n=1

Xn

P��n
( ~wi�ni)

��
Z 1

0

c���e��n(�c)
�

dc;

� �

2X
n=1

Xn

P��n
( ~wi�ni)

�� ���nV (�n) + (�1�� � ���)D(�n)� ;
� �

2X
n=1

Xn

P��n
( ~wi�ni)

��W (�n):

It is straightforward to verify that dD(�n)=d�n < 0. Observe that

d

d�n
�nV (�n) =

d

d�n
�n

Z 1

0

�Z p

p=�

c��1(p� c)dc
�
p����1e��np

�

dp;

=

�
����1

1 + �
� �

��

�

�
d

d�n

�
�n

Z 1

0

p2���e��np
�

dp

�
;

=

�
����1

1 + �
� �

��

�

�
� � � � 1

�2
�

��1�2�
�

n �

�
1 + 2� � �

�

�
:

Under the parameter restriction in BEJK that � < 1 + �; the above expression is negative.

Hence, dW (�n)=d�n < 0:

Suppose �rst that �1 � �01; or, equivalently,

S1 ew��1 + S2 ( ew2�)�� � S 01 ew��1 + S 02 ( ew2�)�� :
Then,

(S2 � S 02) ( ew2�)�� � (S 01 � S1) ew��1
By assumption S1 < S 01 and S2 > S

0
2 and � > 1,

(S2 � S 02) ew��2 > (S 01 � S1) ( ew1�)�� ;
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or,

�2 > �
0
2:

But, �1 � �01;�2 > �02 and the formulas above for pro�t contradict that a �rm located at 2

is indi¤erent between (S1; S2) and (S 01; S
0
2). Hence, �1 < �

0
1. To keep the �rms in location

2 indi¤erent between j and j0, it must be that �2 > �02.

From v2(S1; S2) = v2(S
0
1; S

0
2), we see that

X1

P��1
~w��2 �

�� [W (�1)�W (�01)] =
X2

P��2
~w��2 [W (�02)�W (�2)] ;

or,
X1

P��1
~w��1 �

�� [W (�1)�W (�01)] =
X2

P��2
~w��1 [W (�02)�W (�2)] :

Since �1 < �01; �2 > �
0
2; and dW (�n)=d�n < 0; both sides of the above equality is positive.

Because � > 1; we have the following inequality.

X1

P��1
~w��1 [W (�1)�W (�01)] >

X2

P��2
~w��1 �

�� [W (�02)�W (�2)] ;

or,

X1

P��1
~w��1 W (�1) +

X2

P��2
~w��1 �

��W (�2) >
X1

P��1
~w��1 W (�

0
1) +

X2

P��2
~w��1 �

��W (�02):

which is v1(S1; S2) > v1(S 01; S
0
2):

Proof for Lemma 2

Proof. For part (i), observe that from (6) and (7), we have

lim
M!1

Pr
�
M�1=�(`(M))�1Z1 < z

�
= e�z

��
:

Also note that if `(:) is slowly varying, then 1=`(:) is also slowly varying. Thus, we write,

with a little abuse of notation of `,

lim
�H!1

Pr
�
(mi

�H)�1=�`(mi
�H)Z1 < z

�
= e�z

��
: (28)
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Using (28); the distribution function of Z1i is

Pr[Z1i < z] = Pr[� �HAi bZ1i < z]
= Pr[(mi

�H)�1=�`(mi
�H) bZ1i < h��i m�1=�

i
�H���1=�`(mi

�H)
z

� �H
]

! Pr[(mi
�H)�1=�`(mi

�H) bZ1i < h��i m�1=�
i z]; �H !1

! e�h
��
i miz

��
; �H !1

where the third line follows from the fact that lim �H!1 `(mi
�H)=`( �H) = 1:Thus, Ti = h

��
i mi:

The joint distribution result (11) holds under the same condition for which (9) holds. See

Theorem 8.4.2 in Arnold et al. (1992).

For part (ii), simply let � �H = ��1=� �H���1=�; and observe that

Fi(z) = Pr[� �HAi bZ1i < z] = Pr[ bZ1i < z

� �HAi
] =

"
e
��

�
z

� �HAi

���#mi
�H

= e�h
��
i miz

��
:

We actually chose a constant for `(:) in this case.5 This same � �H can be used for the

Pareto distribution, but the result only holds aymptotically, as stated in part (i). There are

distributions in the domain of attraction for Fréchet that where `(:) can not be a constant,

e.g., Loggamma distribution; see Chapter 3.3 in Embrechts et al. (1997).

The Fréchet density is given by fi(z) = ��z���1e��z
��
:One can derive (11) from the

joint density of �rst and second order statistics which is given by fi(z1; z2) = Mi(Mi �
1)fi(z1)fi(z2):

Proof for Proposition 2

To prove this proposition, it is most convenient to express the utility ratio u(h1) in �; where

� � �1=�2. To this end, we �rst derive the equilibrium condition in terms of �; given h1;

and study the properties of �:

Using BEJK Results 1 and 2, expenditure by location 1 on goods from location 2 equals

X12 = X1T2 (w2�)
�� =�1. Using the analogous expession for X21 and the market clearing

condition X12 = X21 implies

X1

X2

=
T1w

��
1 �1

T2w
��
2 �2

=
m��+1
1

m��+1
2

w���,

5Alternatively, we can choose `(:) according to the method described above, and it can be veri�ed that
such an `(:) is tail-equivalent to a constant. A useful result is that if two distributions are tail-equivalent,
then the same normalizing constant can be used. For tail-equivalence, see Chapter 3.3 in Embrechts et al.
(1997).
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where we substitute in equation (16) Ti = (1 + �)��m
��+1
i for the productivity distribution

scaling parameter and we let w � w1=w2 be the wage ratio. The equilibrium job choice

condition (15) implies n1=n2 = m1=m2 = h1=(1�h1). Also, wh1=(1�h1) = X1=X2 (equation

(14)). Plugging these in gives

w1+� =

�
h1

1� h1

���
�. (29)

Next, we use the de�nition (13) of �i to obtain

� =
�1
�2
=
T1w

��
1 + T2w

��
2 �

��

T1w
��
1 �

�� + T2w
��
2

=
h��+11 w�� + (1� h1)��+1 ���

h��+11 w����� + (1� h1)��+1
:

Solving this expression for w and substituting into (29) yields the following equation that

de�ne � as a function of h1 implicitly.�
h1

1� h1

���+�+1
=

�
�� ���
1� ����

�1+�
��: (30)

We collect the properties of � derived from (30) as a lemma.

Lemma 3

(i) For h1 2 (0; 1); ��� < � < � �:

(ii) Given h1 2 (0; 1), there is a unique � satisfying (30), and d�=dh1 > 0.

(iii) � = ���; 1; � � when h1 = 0; 0:5; 1, respectively.

(iv) limh1!0 � = �
��; and limh1!1 � = �

�; and hence by (ii) and (iii), � is continuous and

increasing over h1 2 [0; 1]

Proof. For (i): ��� < � < � � is the consequence of the fact that �����
1����� > 0:

(ii) Given h1, the left-hand side (l.h.s.) of (30) is �xed. If the right-hand side (r.h.s.) is

strictly increasing in �, then there is a unique � satisfying (30) since lim�!��� r:h:s: = 0 and

lim�!�� r:h:s: = 1: Moreover, since the l.h.s. is increasing in h1, d�=dh1 > 0 if r.h.s. is

increasing in �: Taking the derivative of the r.h.s., we obtain

�
�
����
����1

�� 1
�

� (� � � �)2
�
�� ��

�
�+

1

�

�
+ � 2�(1 + 2�)� 1

�
:
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De�ne a (�) as

a (�) = �� ��
�
�+

1

�

�
+ � 2�(1 + 2�)� 1:

The sign of a (�) determine the sign of the derivative of the r.h.s. with respect to �: Note

that a (�) achieves minimum at � = � � or ���: Then,

a (�) � a
�
� �
�
= a

�
���
�
=
�
� � � 1

� �
1 + � �

�
(1 + �) > 0:

(iii) The values of � at h1 = 0; 0:5; 1 are straightforward by inspecting (30) and noting that

� = �1=�2 must be �nite and positive even when h1 = 0 or h1 = 1.

(iv) In equation (30), the l.h.s. explodes to 1 as h1 converges to 1. This implies that � has

to converge to � �: The limit of � when h1 approaches 0 is similarly obtained.

Given Lemma 3, it is convenient to have

d�

dh1
=

��+�+1
1+�

�
h1(1�h1)

1���2�
1�����

�
����� +

�
1+�

: (31)

To obtain the expression for the utility ratio u; observe that

u =
U1
U2
=

�
w1
P1

��
(N1 +M1)

�(1��)�
w2
P2

��
(N2 +M2)

�(1��)
= w��

�
�

�
1� h1
h1

�1��
.

Using (29) to substitute in for w, we arrive at

u =

�
1� h1
h1

� 1+(1��)���(��+1)
1+�

�
�(1+2�)
�(1+�) : (32)

Denote the numerator of the exponent of the term (1 � h1)=h1 in (32) as a composite
parameter

� � 1 + (1� �)� � �(�� + 1):

It can be veri�ed that, from (31) and (32),

du

dh1
=

�
1� h1
h1

� �
1+� �

�(1+2�)
�(1+�)

1 + �

1

h1(1� h1)
[	(�)� �] ; (33)

where

	(�) =
�(1 + 2�)[�� + � + 1]

�(1 + �)

1
1���2�
1�����

�
����� +

�
1+�

:

36



Since � > 1 for h1 > 0:5;

d

d�

�
1� ��2�
1� ����

�

�� ���

�
=
���(�2 � 1)(1� ��2�)
(1� ����)2(�� ���)2 > 0:

From Lemma 3, � is strictly increasing over h1 and ranges from 1 to � � on h1 2 [0:5; 1]. For
� 2 [1; � �], 	0(�) < 0, 	(�) > 0, 	(� �) = 0; and

� � 	(1) = �(1 + 2�)(1� ���)[�� + � + 1]
�(1 + 2� + ���)

> 0:

From (33), the sign of du=dh1 depends on the sign of 	(�) � �: Since 	(�) decreases
from � to 0 on h1 2 [0:5; 1], the two bounds of 	(�), i.e., � and 0, provide two dividing lines
which partition the parameter space into three: (a) � � �, (b) � > � > 0, and (c) � � 0: The
two dividing lines have straightforward interpretations as follows.

That � � � or not is equivalent to, by (33) and 	(�) < �, whether the utility ratio u on
h1 2 [0:5; 1] is strictly decreasing or not. If yes, then symmetric equilibrium is stable and

the only equilibrium. That � � 0 or not, by (33) and 	(�) > 0, is equivalent to whether

u is strictly increasing or not. If yes, then a black-hole equilibrium exists and is the only

agglomeration equilibrium. In fact, by inspecting (32), we know that if � < 0, u!1 when

h1 ! 1, and if � = 0; u at h1 = 1 is a �nite number greater than 1.

In the in-between case, � > � > 0, there exists an ĥ1 2 (0:5; 1) such that du=dh1 > 0 for
h1 2 [0:5; ĥ1), and du=dh1 < 0 for h1 2 (ĥ1; 1): In this case, u increases from 1 at 0:5 to a

peak at ĥ1 and then decrease after ĥ1. In fact, u ! 0 as h1 ! 1, since � > 0. Hence, there

exists a unique agglomeration equilibrium h�1 2 (0:5; 1); and h�1 2 (ĥ1; 1):
It is straightforward to verify that the three subspaces (1) � � �, (2) � > � > 0, and (3)

� � 0 correspond to (1) � � �̂L; (2) � 2 (�̂L; �̂H); and (3) � � �̂H , respectively. At the

interior agglomeration equilibrium h�1, du=dh1 < 0 and is therefore stable. Any black-hole

equilibrium is also stable. This proves part (i).

For part (ii): du=dh1 < 0 at an interior agglomeration equilibrium h�1. Let � denote

a parameter generically. If du=d� > 0 at h�1, then h
�
1 increases. It su¢ ces to show that

d ln(u)=d� > 0 at h�1. From (32),

ln(u) =
�

1 + �
ln

�
1� h1
h1

�
+
�(1 + 2�)

�(1 + �)
ln(�): (34)

37



Di¤erentiating (34) with respect to �; we get

d ln(u)

d�
=
d

d�

�
�

1 + �

�
ln

�
1� h1
h1

�
+
d

d�

�
�(1 + 2�)

�(1 + �)

�
ln(�) +

�(1 + 2�)

�(1 + �)

d ln(�)

d�
; (35)

where

d ln(�)

d�
=
1

E
f�
�
�� + � + 1

1 + �

d

d�

�
1 + �

�

�
� d

d�

�
�� + � + 1

�

��
ln

�
1� h1
h1

�
+

�2

1 + �

d

d�

�
1 + �

�

�
ln(�)� (1 + �)

�
1� ����
�� ���

�
@

@�

�
�� ���
1� ����

�
g; (36)

where

E = (1 + �)

�
�

�� ���
1� ��2�
1� ����

�
+ �:

Obviously, E > 0: Evaluate both side of (34) at h�1; and we have

ln

�
1� h�1
h�1

�
= ��(1 + 2�)

��
ln(��): (37)

Plugging (36) into (35) to simplify and using (37), we obtain

d ln(u)

d�
jh1=h�1 = �

� ln(��)� �(1 + 2�)
�E�

1� �����

�� � ���
@

@�

�
�� ���
1� ����

�
h1=h�1

; (38)

where

�� =
d

d�

�
�(1 + 2�)

�(1 + �)

�
� �(1 + 2�)

��

d

d�

�
�

1 + �

�
+
�2(1 + 2�)2

�2�E�
�

1 + �

�
d

d�

�
�� + � + 1

�

�
� �� + � + 1

1 + �

d

d�

�
1 + �

�

��
+
�(1 + 2�)

�E�

�
�

1 + �

�2
d

d�

�
1 + �

�

�
:

Note again that ln(��) > 0 since �� > 1 as h�1 > 0:5: If � = � ; then �
� = 0; and

d ln(u)

d�
jh1=h�1 = �

�(1 + 2�)

�E�
1� �����

�� � ���
�����1(1� ��)
(1� �����)2 > 0:

If � = � or �, the second term on the r.h.s. of (38) is zero, and it can be veri�ed that �� > 0:

In sum, for � = �; � ; or �, d ln(u)
d�

jh1=h�1 > 0, and hence h�1 increases when either of �; � ; �

increases.
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