Categories
ETEC533 Module A: Framing Issues

Could lab simulations replace traditional experiments for distributed-learning courses?

Abstract

Student preoccupation with technology combined with the new option of enrolling in courses offered via distributed learning has resulted in an ever increasing number of students learning science without the benefit of traditional hands-on laboratory experiments. This paper analyzes the educational benefits of traditional laboratory experiments and computer simulations of science experiments, with a focus on chemistry, to determine if virtual experiments are a feasible way of offering laboratory experiences to students enrolled in distributed learning courses.


Laboratory Work in Science Education: Can Computer Simulations Provide the Same Educational Benefits as Traditional Hands-On Experiments?

As a chemistry teacher I have noticed my students increasing preoccupation with technology. Whether talking on their cell phones, plugged into their mp3 players or attempting to play their hand held video games whenever I’m not looking, it has become increasingly clear to me that technology is something that catches and keeps their attention. Discussions with colleagues teaching in different schools in different areas of the province of British Columbia have revealed similar experiences. Marie, a fellow science teacher, believes that the students we teach today are different than students from the previous generations. She believes that “by not integrating technology into the classroom we are not really thinking about our students and the best way for them to have meaningful learning” (personal communication, January 25, 2009).

This increase in technology appreciation is occurring at the same time as dramatic changes are taking place in the way in which a student can choose to receive their education in British Columbia. In 2006 the British Columbia government created a provincial virtual school which offered students the opportunity to take classes online outside of their normal class timetable via the internet (BCTF, 2006). This type of course work has been termed ‘distributed learning’. While statistics detailing exact enrollment numbers have proved difficult to find, my personal experience has shown a continually increasing enrollment in distributed learning courses by British Columbia high school students.

While I admit to the benefits of distributed learning such as flexible scheduling, a wider selection of courses to choose from than may be offered in a student’s local school and the ability to retake a course a student was unsuccessful with within the same school year, I have some reservations about students enrolling in science courses via distributed learning. I do not believe that science can be learned effectively simply by memorizing facts and completing equations; students need experience with the process of doing science. They gain this procedural experience by taking part in laboratory experiments. Experiments are an important component of any science course, yet are not included in a number of courses being offered via distributed learning. The course description for the Chemistry 11 course offered through Open School BC mentions a laboratory component to the course which the student would complete at their local high school. However, the description also mentions that if the student is unable to attend their local high school then sample data would be provided to allow them to complete the experiment-related calculations without performing the actual experiments. The Chemistry 12 course description does not even mention a laboratory component. (Open School BC, 2008)

Technology now exists that would allow a student to complete a chemistry experiment without ever setting foot inside a bricks and mortar laboratory. Computer software such as Virtual Chemlab (Woodfield, 2005) provides the student with the ability to set up experimental equipment, manipulate solutions and collect data just as a student would do in a traditional laboratory, but without ever having to leave their home. Considering students’ current preoccupation with technology and their desire to enroll in courses provided via distributed learning, could virtual laboratory simulations such as Virtual Chemlab provide them with the same benefits as traditional laboratory experiments?

The Role of Experiments in Science Education

Laboratory experiments have long been considered an important part of science education (Hofstein & Lunetta, 2003). They provide students with the opportunity to experience first-hand the wonders of the natural world. In their review on the role of laboratory experiments in science education, Hofstein and Lunetta (2003) postulate that when used correctly, laboratory experiments provide students with an opportunity to experience the process of science and the feeling of working as a member of a scientific community. Tobin (1990) claims that meaningful learning will result when students are given the opportunity to explore materials and equipment in a constructivist-model approach. Unfortunately, these types of experiences are not often presented to students in school science classes.

The problem is that experiments are often used infrequently and incorrectly in the science classroom. Teachers are hesitant to utilize laboratory experiments in their teaching for a number of reasons; lack of training, expertise and confidence can lead teachers to attempt class experiments only when they can control every variable in the process. These “cookie-cutter” types of lab experiences follow a very objectivist or structured framework and are not as effective as more free-form or constructivist experiences at correcting student misconceptions of scientific concepts and reinforcing correct conceptions of these concepts. (Windschitl & Andre, 1998). Increasing limitations on the types of chemicals available to school laboratories have led many teachers to abandon the use of experiments in certain components of their teaching (personal experience). In the cases of junior science or elementary level courses, many teachers do not feel they have the expertise with the subject to safely define the scope of an experiment for their students. If students ask to expand on the parameters of a “cookie-cutter” lab, for example asking if they can mix a number of solutions together to see what happens; many teachers do not feel comfortable judging whether or not this is safe to do. In order to facilitate the optimal use of laboratory experiments in elementary and secondary science, more teacher-training in the theory and practice of experimental techniques is necessary.

Ideally, the laboratory would be a place where students could define the parameters of an investigation they wish to carry out and could then proceed to conduct experiments in a community of peers. The reality is that with the number of students in a typical science class, the restrictions on chemicals and equipment available to students and the time constraints due to the extent of the science curriculum, use of the traditional laboratories in this way is not feasible. A compromise between the constructivist ideal and the objectivist reality is being sought and established in many exemplary science classrooms (Windschitl, 1998). One component being utilized to bridge the gap between reality and the ideal experimental environment are virtual laboratories.

The Role of Laboratory Simulations in Science Education

Many of the concerns teachers have with traditional laboratory experiments such as safety, lack of funding, inability to supervise a large number of students effectively and lack of class time in which to perform the experiments can be addressed by the use of computer simulations or ‘virtual laboratories’. Research has shown that students perform better in the laboratory and get more value from their hands-on experience when they have pre-trained using virtual laboratory technology (Robinson, 2003; Finkelstein et. al., 2004; Martinez et. al., 2003).

Robinson (2003) analyzed the various types of virtual lab simulations and found that they allow the students to explore experimental parameters without the typical fears of misusing equipment and making mistakes resulting in the waste of time and materials. This experience leads to increased confidence in the students which results in better performance (less mistakes) when participating in traditional laboratory experiments. Research has also shown the value of chemistry simulations in allowing students to gain experience with experiments that are too dangerous or expensive to carry out in the traditional way (Robinson, 2003; Martinez, 2003).

Organic chemistry is a notoriously difficult branch of science for students to grasp. Two different studies on the use of the Virtual Chemlab simulation software in entry level organic chemistry courses have shown a marked improvement in student success in the course (measured by final letter grade) when students spent time experimenting with this software (Woodfield, 2005; Martinez, 2003). Students were asked to spend a few hours a week working through organic chemistry experiments using the software, in addition to their regular course work. Results indicated that the simulation helped students grasp the underlying mechanisms occurring in the reactions. Can this benefit be translated to distributed learning science courses?

Can Laboratory Simulations Be Effective Alternatives to Traditional Experiments?

Most studies investigating the efficacy of simulated experiments have been conducted with the simulation being utilized in addition to traditional experiments (Martinez, 2003; Robinson, 2003; Windschitl, 1998; Woodfield, 2005). The challenge facing students studying science via distributed learning is that they do not have access to a location or the materials necessary to perform these traditional experiments.

Finkelstein et. al. (2004) conducted a study wherein one group of undergraduate physics students carried out traditional electric circuit lab experiments while another group completed the same experiments via computer simulation. Test results at the end of the course revealed that students who only had access to the simulation experiments did as well, if not better, than the students who learned by doing traditional experiments. In addition, in a practical lab exam the simulation students were as capable at setting up circuits with traditional equipment as the students who had access to this equipment for the entire semester. These results clearly show the efficacy of simulation software for the teaching of physics concepts.

Research has not been done on the effectiveness of chemistry laboratory simulations without the assistance of traditional experiments. While chemistry simulations have been shown to be very effective in addition to hands-on laboratory work, further research is needed to determine their solo efficacy.

Conclusion

Simulations are effective teaching tools for a number of reasons: students are not concerned about breaking equipment, they are unable to utilize materials in unproductive ways (such as using pipettes as water guns), they are able to repeat experiments an infinite number of times without concerns about cost, and they include models that are very useful in helping students form scientific concepts. Students can repeat simulation experiments before tests to remind themselves of concepts and simulations afford students a freedom to “try and see” what will happen when various substances are combined together. Despite these benefits, simulations have not taken the place of traditional experiments.

There are some factors inherent to traditional experiments that simulations are not able to emulate. Science is a process and when students work through this process in the laboratory they do so in a group. The sense of community that is such an important part of the experiment experience has not been translated effectively into simulation technology. Scientists do not work in a vacuum; they learn from and work together with colleagues. The use of a simulation is a solitary activity, negating the collaborative benefits of traditional experiments. Additionally, experiments allow students to utilize all their senses when exploring the scientific process. Simulations, while able to share visible and audible effects cannot match the sensitivity of our senses. Students cannot feel the awe of a spontaneous exothermic reaction by watching steam billow from a beaker on their computer screen.

Research has shown simulations to be very effective in increasing student understanding of scientific concepts when used in addition to traditional experiments. The simulations allow for a more constructivist approach to laboratory experiments, resulting in increased student understanding of mechanisms and underlying concepts. While some success has been experienced with the substitution of simulations for traditional experiments, the general consensus of researchers is that “…current virtual laboratories provide an important extension to … learning, but as such they should not be expected to replace the learning experience of real-life laboratory work” (Robinson, 2003).

Resources

British Columbia Teachers Federation. (2006-2007). Distributed Learning in British Columbia Schools 2006-2007. (BCTF Publication ID 5630). Retrieved February 10, 2009 from http://bctf.ca/publications.aspx?id=5630

Finkelstein, N.D., Perkins, K., Adams, W., Kohl, P. & Podolefsky, N. (2004). Can Computer Simulations Replace Real Equipment in Undergraduate Laboratories. PERC Proceedings. Retrieved February 9, 2009 from CiteUlike database.

Hofstein, A. & Lunetta, V.N. (2003). The Laboratory in Science Education: Foundations for the Twenty-First Century. Wiley Periodicals. Retrieved February 8, 2009 from http://kisi.deu.edu.tr/ercan.akpinar/dosyalar/lab1.pdf

Kuech, R., & Lunetta, V. (2002). Using digital technologies in the science classroom to promote conceptual understanding. The Journal of Computers in Mathematics and Science Teaching, 21(2), 103-26. Retrieved February 5, 2009, from Education Full Text database.

Martinez-Jimenez, P., Pontes-Pedrajas, A., Polo, J., & Climent-Bellido, M. (2003, January 1). Learning in Chemistry with Virtual Laboratories. Journal of Chemical Education, 80(3), 346-52. (ERIC Document Reproduction Service No. EJ663502) Retrieved February 5, 2009, from ERIC database.

Open School BC. (July, 2008). Distance Education K-12 Guidebook 2008-2009. Retrieved February 11, 2009 from http://www.openschool.bc.ca/de/guidebook2008_09.pdf

Robinson, J. (2003) Virtual Laboratories as a teaching environment: A tangible solution of a passing novelty? Retrieved February 5, 2009 from http://mms.ecs.soton.ac.uk/mms2003/papers/5.pdf

Tobin, K. G. (1990). Research on science laboratory activities. In pursuit of better questions and answers to improve learning. School Science and Mathematics, 90, 403–418.

Windschitl, M., Andre T. (1998). Using Computer Simulations to Enhance Conceptual Change: The Roles of Constructivist Instruction and Student Epistemological Beliefs. Journal of Research in Science Teaching. 35(2), 145-160.

Woodfield, B., Andrus, M., Waddoups, G., Moore, M., Swan, R., Allen, R., et al. (2005, November 1). The Virtual ChemLab Project: A Realistic and Sophisticated Simulation of Organic Synthesis and Organic Qualitative Analysis. Journal of Chemical Education, 82(11), 1728-1735. (ERIC Document Reproduction Service No. EJ749923) Retrieved February 5, 2009, from ERIC database.



Categories
ETEC533 Module A: Framing Issues

New Perspectives on Educational Technology Integration

     After completing my interview and then reading and reflecting on those of my peers, my thoughts on technology integration in education (T.I.) have changed somewhat.  I used to think that T.I. was something that proactive teachers should attempt in an urge to stay on the cutting edge of education.  I’m now starting to think that the advancement of technology is inevitable, and rather than applauding those who choose to fight to include technology it is something that should be more mandatory. I do not think that teachers should be forced to change their style of teaching, but the fact remains that our students are becoming more and more tech-savvy and to not choose to teach them in the language they are most comfortable with (technology) is doing a disservice to them.

 

            Considering how essential I’m starting to think T.I. is quickly becoming to teaching, it is vital that we improve the manor in which we educate teachers on this topic.  Pre-service programs need to include courses that both teach how to use the programs AND how teachers can effectively integrate these programs into their teaching.  Providing some pre-made teaching resources so that teachers can have the chance to experience success with these techniques without the requirement of a tonne of effort on their part would help to show the reluctant teachers how valuable technology can be.

 

            I found it interesting that none of the interviewee’s held negative viewpoints about technology.  Some were concerned about wasted time due to technical glitches, but all could see the value in this resource.  I would be interested to discover if there is any research showing the superiority of tech-inclusive teaching styles to those that do not include any tech content.

Categories
ETEC533 Module A: Framing Issues

My Interview Analysis

Educational Technology Interview Analysis

Interviewee Introduction: The subject of this interview is a young teacher in the subjects of junior science and senior chemistry. She teaches in a moderate to large sized school (aprx. 1820 students) and is in her 5th year of teaching.

Interview Set-up: This interview was conducted over the internet via instant messenger. I spoke with the interview subject on the telephone prior to the interview and again after the interview was complete. Those audio conversations will not be transcribed here as they simple included an explanation of why this interview was being conducted and a heartfelt thank you for assisting with this assignment. The interview lasted approximately 25 minutes.

Interview Excerpt:

Analysis:

Q: 1 Do you use technology in your science classroom?

A: Yes. I use power point presentations, projectors, wikis, blogs, Google documents and Youtube. Do you mean hardware or software?

When asked about the use of technology, the interview subject clearly felt that “technology” referred to computer-related applications. She described a wide range of computer-related applications that are utilized in her classroom. The final question she asks the interviewer further shows how her belief of “technology” focuses on computer technology.

Q: 2 Do you believe the use of technology is beneficial to student learning?

A: When I use technology in the classroom the level of motivation and engagement in my students increases dramatically. Even a clip on Youtube engages students a lot more than any other traditional methods of teaching. Also, I personally believe that we are teaching a new generation [of students] that are driven by multimedia. The use of technology changes the [merely] compliant students to active learners

The interviewee has a strong belief that technology increases engagement and motivation in her students. She has found that students who merely go through the motions become active learners through the use of technology.

Q: 3 Please tell me about your most successful lesson using technology and why you believe it worked so well.

A: I celebrated mole day with my students this year using multimedia. They all had to make a movie about the concept ‘mole’. They made fun and exciting clips and uploaded them to Youtube. Everyone was engaged and excited about the mole and mole day project. I even had requests from students who were not even in chemistry wanting to come in to watch the films with my students on mole day. The learning [and] sharing that went on that day far exceed my expectations.

The lesson was clearly engaging, not only for her students but for other students in the school as well. This is a great example of how technology can make a difficult subject accessible to many different students.

Q: 6 Have you received support from your school or school board in your attempt to integrate technology into your classroom? In what way?

A: NO…and yes. I’ve asked for a ‘Smartboard’ for two years now, I even have research on its benefits. However, due to funding issues they weren’t able to get me the Smartboard. I got a projector for my room…. however, this didn’t come from the school board, it came from a grant we received. The school board does not give you the $ for the things you want to use in the classroom, especially if it’s a new technology it would be the last thing on their list or it seems like it.

It is clear that the teacher is frustrated with the lack of support from her school board. She has researched the benefits of the technology she is requesting, but has found it necessary to find her own sources of funding for the equipment she wishes to purchase.

Q: 7 Did you receive training in the use of educational technologies during your pre-service teaching program? Was it beneficial?

A: I did receive some training in the use of educational technologies. It was not really realistic [as] they had a class set of lab tops (probes) and computers. It was done in an ideal setting, which does not exist in [the] public system

Some technology instruction was included in her teacher-training; however it is not applicable to a real-world situation. The program may have shown how to run a technology dependant lab when all students have access to equipment, but this doesn’t translate to the teacher’s real-life situation of a lack of access to technology.

Q: 8 Has the integration of technology made your job as a teacher easier or harder? Please explain your answer.

A: I think it made it easier or at least more efficient. As a teacher you want your students to be motivated and engaged. With the integration of technology, it was easier to have my students motivated and excited about the course. I think because of that it (my job) was better; however, booking the lab and learning the technology myself took some time

Although it required some time to familiarize herself with the technology, the teacher feels that incorporating these devices has made her job “more efficient” and has benefited her students.

Final question: Overall, do you think it is beneficial to incorporate new technologies into the classroom and why?

A: I personally believe that incorporating new technologies into the classroom is necessary. I think by not integrating technology into the classroom, we are not really thinking about our students and the best way for them to have meaningful learning. I think especially with the tools and applications of web 2.0, the integration and use of technologies got so much easier and better for everyone. I think if we really want to be a better teacher and better educator we must integrate technologies into the classroom for the new generations of students who are wired differently than the students from 50 years ago. Some of the teachers are still teaching the same way as they did 20, 30, 40, 50 even 60 years ago. We need to realize that the students now are different than students then, and we should do what we need to do to make it better for students to learn.

This teacher has a clear opinion that the incorporation of technology into the classroom has moved beyond the “is it helpful” stage to the “it is necessary” stage. She believes that she is better able to motivate her students when she utilizes technology and that it helps them become more active learners. It is clear that she feels this is the direction education is heading in, and teachers should incorporate technology to allow them to better relate to their students.

Categories
ETEC533 Module A: Framing Issues

Thoughts on Good Use of Tech in Science Class

To me, good use of technology in the math and/or science classroom occurs when the technology serves to enhance a students learning experience without undue difficulty in mastering the technology and without drawing away from necessary knowledge. An example of this would be the use of digital probes and computers in the chemistry lab.

The computers and probes allow the students to more easily manipulate the data they collect from the laboratory experiments. The process of graphing data is a skill learned in both math and science, so the substitution of a computer program for the time students may spend graphing by hand makes sense when the students have already clearly shown a mastery of these skills.

The digital probes allow for a more accurate reading of experimental data than is possible with analogue probes, and the ease of use of this technology allows students to gather a greater amount of data in the same amount of time.

Students can quickly and clearly visualize the effect of adding chemicals to their experiments, as computers can be programmed to automatically graph data as it is recorded. This creates a clear relationship to students between the physical reaction of the chemicals and the theories they’ve learned in class.

The main drawback to this type of technology is cost. While students can quickly learn to use the probes and graphing programs, the equipment is not cheap and unfortunately, it is very easy to break probes through improper use or storage. Hopefully, as technology advances this equipment will become more affordable and durable.

Categories
Module A: Framing Issues

Steffanie’s Auto e-ography

One of my first memories of technology use in school was in elementary school in an intermediate grade (I don’t remember which one) when my teacher would bring out the big tote of calculators. I remember vividly that we weren’t allowed to use them until we had passed a myriad of tests proving our proficiency with our multiplication tables. I remember being so excited to use the calculators until I realized that it took me longer to solve my math equations using the calculator as I had to take the time to punch in the numbers!

That memory conflicts strongly with the situations I have experienced in my own classroom where I ask students to complete simple calculations in the process of solving a chemistry problem (something such as 40/10 ) and they instinctively reach for their calculators rather than performing the mental calculation! I find it alarming how drastically some of the basic math skills seem to have deteriorated in students as they become more and more reliant on their calculators.

Another early memory of technology involves the first computer my parents bought. I don’t remember what type it was, but I was 9 or 10 when they brought it home, it took up most of my Dad’s desk and was super noisy when it was turned on. I wasn’t able to do much on it without my parents help, as I didn’t understand the DOS commands, but my sister and I had great fun playing around with some simple educational games. We would challenge each other with typing speed tests, and I remember the day I beat both my parents in typing speed, I felt so grown up!

From those days of asking for assistance with computer technology things have revolved 180 degrees. I am now the person my entire family calls for advice when their digital technologies (from cell phones to computers) glitch. I now find that technology has moved beyond the novelty stage to become something that really does assist me and make my life simpler.

Spam prevention powered by Akismet