Category Archives: B. Anchored Instruction Symposium

Goodbye Rote, Hello Anchored Instruction

Rote instruction? Anchored instruction? Behaviourist teaching vs constructivism? What is best for Today’s learner? Why did I highlight today’s over the other pedagogical terms in the opening sentences? Because today’s learner is different from the students of past generations. Not only have they grown up in a digital world they are entering a work force that is different from previous generations. Since the industrial revolution, education and career preparation (for the most part) have been based on behaviourist pedagogy, using rote techniques to prepare students for well-defined jobs. Most high school graduates headed into factory assembly, retail or other careers such as teaching and nursing. Teachers and nurses also followed the same pedagogical ideals “do it this way, this is best, this is how it has always been done”. Follow the rules and you will be fine.

Most educators today realize that our system of educating our students has not changed all that much from the one room school house. But, the world has changed by leaps and bounds. By continuing with rote instruction techniques and rewarding students for good behaviour we are not preparing them for a world that has changed while education stood still. The Japer materials are responding to the need to transform education in order to provide students with the skills required in today’s work force; problem solving, critical thinking, creativity and collaboration to name a few. The creators of the Jasper project realized that students needed to not just understand computation skills and how to plug numbers into a formula but how to apply those skills, when to apply them, why they worked and how to construct their knowledge so it made sense in their world. Students needed to see links between math and science and the real world. Their world!

I totally agree with the ideals of the Jasper program. I spent far too many years teaching the way things were always taught, looking out at a sea of bored, disengaged students who either played the game to get along or acted out because they could care less. A very troubling result of this is that more and more of my students lost their creativity, or school had killed it. When given assignments, they were interested in only one thing: how do I do this to get it done, and get a good enough grade. They wanted to be spoon fed step by step instructions because they had learned that is how you survive. You may die of boredom but you graduated. Conform, do it the way you were shown and sit quietly may have made for some easy to manage classrooms but what have we created? Generations of graduates who do not know how to think for themselves. Class upon class of kids who learned that talking in class was wrong and collaboration is like cheating. How do we expect them to function in a work force that now prizes these skills?

We need to move away from teaching isolated rote skills and begin to use other techniques such as anchored instruction. The Cognition & Technology Group at Vanderbilt (CTGV, 1990a) defined anchored” instruction as;

instruction is situated in engaging, problem-rich environments that allow sustained exploration by students and teachers. In the process, they come to understand why, when, and how to use various concepts and strategies (e.g., Brown, Collins, & Duguid, 1989; CTGV, 1990). The anchors create a “macrocontext” that provides a common ground for experts in various areas, as well as teachers and students from diverse backgrounds, to communicate in ways that build collective understanding (Bransford, Sherwood, Hasselbring, Kinzer, & Williams, 1990; CTGV, 1991a). Macrocontexts are also designed to facilitate experimentation by researchers who want to compare the effects of using them in conjunction with different types of teaching strategies (p. 65).

CTGV (1992a) created the Jasper Woodbury Problem Solving Series,” a set of specially designed video-based adventures that provide a motivating and realistic context for problem posing, problem solving, and reasoning. The series also allows students, teachers, and others to integrate knowledge from a variety of areas, such as mathematics, science, history, and literature (p. 65). Each problem in the video series begins by having students watch a problem story. (When first introduced to the video students do not know they will be solving a problem or what that problem may be). When the story is finished, various mini scenarios are presented. The scenarios begin more simply with using presented information (students have the opportunity to go back and rewatch all or portions of the video story at any time) to solve more basic problems. After the initial straight forward problems are addressed more abstract problems requiring more advanced math and science skills are introduced.

The study by Vye et Al. (1997) Complex mathematical problem solving by individuals and dyads looked at a group of first year college students and high functioning 6th grade math students. Both groups were introduced to a Jasper Woodley video problem (The Big Splash) and asked to complete the various sub problems individually. A second experiment used fifth grade dyads to solve the same problems. It must be noted that:

Solutions to Jasper problems involve multiple goals that have a hierarchical structure, numerous constraints, multiple-solution options, and multiple-solution paths. Some of the cognitive processes involved in solving Jasper problems include formulating the subproblems needed to solve the overall problem, organizing the subproblems into solution plans, coordinating relevant data with appropriate subproblems, distinguishing relevant from irrelevant data, formulating computational procedures to solve subproblems and the overall problem, and determining the feasibility of alternative plans. Traditional school environments produce students who are ill-prepared to solve problems requiring the coordinated use of such processes; presumably because of this, Jasper problems are difficult to solve (p. 438).

Researchers found that in experiment 1 individuals solving the trip-planning problems failed to consider multiple plans perhaps because students may have felt that, once they had a solution, they had met the requirement (p. 471). While the college students outperformed the sixth-grade high functioning math students on most subtests it is interesting to note that the grade five math dyads performed more like the college students and the dyads often looked at multiple solutions (something that did not readily occur in experiment 1). “The explanation for the similarities across fifth-grade and college students may be in the degree to which members of a dyad can monitor the solution process and keep in mind the constraints and search space relevant to the problem. Members of the dyad may fluidly adopt different roles in problem solving as they switch between being listener and speaker in the verbal interaction (p. 479).”

Vye et Al. (1997) study highlighted an important pedagogical technique, allowing students to work in groups. In the group setting students can benefit from the skills and knowledge others bring to the group. It seems to be an effective method of using Shulman’s (1990) Pedagogical Content Knowledge (PCK) outside of direct teaching. Students have the opportunity to share what they know and may be able to teach others how they understand it. I often find students find ingenious ways of helping others understand difficult problems. This group method also extends to Mishra and Koehler’s (2006) TPACK model. Including access to technology for all groups is an excellent way to share the knowledge of students in the class and the technology skills they may possess.

The research by Hasselbring et Al. (2005) concluded that anchored instruction in groups enabled students, even those with math difficulty “to transfer skills learned during instruction to a variety of problems. These findings indicate that a much more robust relationship between these students’ declarative, procedural, and conceptual knowledge was developed (np).”

In terms of technology that is available today (In what ways do contemporary videos available for math instruction and their support materials (c.f. Khan Academy, Crash Course, BBC Learn “Classroom Clips” and “Academic Earth”, video clips in Number Worlds, or others) address or not address these issues?) I think educators will easily find programs that use rote pedagogy to help students learn a skill. I also believe for many this is the only thing they look for, a game like interface that drills basic skill. I do believe there are valuable programs out there that are like the Jasper Woodley series but I believe they are far less used. Why? As mentioned in several of the ETEC 533 interviews: Time, accessibility and teacher understanding. Teachers do not have the time to learn these new programs with a confidence level needed to use it in a classroom situation. Access to technology is a huge problem in many schools (hardware, software and broadband issues). Teachers do not have the skill to troubleshoot problems and feel too much time is wasted in a class if technology crashes.
Personally, I believe many staff members feel overwhelmed by the possibilities and therefore it is easier to do what has always been accepted and done rather than take the chance to try something new (similar to our students wanting to know exactly how to proceed with a project so they don’t go off course). It is time we take chances and show our students it is ok to not do something right. That we don’t give up, we try again. That we collaborate and problem solve, that we practice critical thinking and looking for alternatives. As I have said before our students at every age are capable of amazing things if they are given the opportunity to demonstrate it. Programs based on anchored instruction like the Jasper Woodley series need to become the norm rather than the exception.

Reference:

Cognition and Technology Group at Vanderbilt (1992a). The Jasper experiment: An exploration of issues in learning and instructional design. Educational Technology, Research and Development, 40(1), 65-80

Cognition and Technology Group at Vanderbilt (1992b). The Jasper series as an example of anchored instruction: Theory, program, description, and assessment data. Educational Psychologist, 27(3), 291-315

Hasselbring, T. S., Lott, A. C., & Zydney, J. M. (2005). Technology-supported math instruction for students with disabilities: Two decades of research and development. Retrieved December, 12, 2013 from Google Scholar as a pdf.

Mishra, P., & Koehler, M. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. The Teachers College Record, 108(6), 1017-1054

Shulman, L.S. (1987). Knowledge and teaching. The foundations of a new reform. Harvard Educational Review, 57(1)1-23

Vye, Nancy J.; Goldman, Susan R.; Voss, James F.; Hmelo, Cindy; Williams, Susan (1997). Complex mathematical problem solving by individuals and dyads. Cognition and Instruction, 15(4), 435-450

My Initial Reflections on the Jasper Series

Although this post does not directly answer one of the questions posed, it provides a space for discussion about the series and I look forward to your ideas and reflections. I have provided another post which more directly reflects the questions posed.

Before reading the article about Jasper anchored instruction, I explored the videos just to get a feel for what this series entailed.  I also wanted to get my initial impressions without having much background. The first thing that struck me was that they were posed as challenges, which I believe would be engaging to students. Then I noticed that they were real-life explorations and I reflected that they would foster rich discussion amongst students. These problems or “situations” would allow students to test out, hypothesize, work and rework as they problem solved. It would be messy but rewarding. They may require some facilitation along the way or a sounding board, but the problem solving would be student centered.

Some questions I had after watching the videos were:

  1. Would it be possible to have the students conduct some of these situations in real-life? (as an adjunct to the videos)
  2. What background in mathematical terminology would the students require?
  3. Could the students competently solve these problems without some prior math knowledge in the area of exploration (rate, capacity, range, temperature, etc.)
  4. What software or platform was used to create and share the videos?

After reflecting on the videos I read the essential article, ” The Jasper Experiment: An Exploration of Issues in Learning and Instructional Design Cognition and Technology”. I was happy to see that many of my reflections correlated with the article.

Within the situational videos basic skills are important, but students develop them in the context of meaningful problem posing and problem-solving activities rather than as isolated “targets” of instruction (Cognition and Technology Group at Vanderbilt (1992). Students must learn to identify and define issues and problems on their own rather than simply respond to problems that others have posed. I also found it interesting that the videos naturally encourage cooperative learning in which students have opportunities to discuss and explain which can assist in solidifying understanding. It is also interestingly noted that working in these cooperative groups allows the students to monitor one another and thus keep one another on track. This would definitely allow the teacher to take on a facilitation role more naturally.

The videos align with the goals of the NCTM as well. These include an emphasis on complex, open-ended problem solving, communication, and reasoning. In addition, connecting mathematics to other subjects and to the world outside the classroom is encouraged. The Jasper videos seem to fit the bill.

Within the article it explains that educators allow the students as much time and room to work on these problems without teacher interaction. Some may see this as foolhardy and may contest that certain skill sets need to be taught before complex problem solving can occur. The Jasper Experiment believes that engaging students in real-world problems that are inherently interesting and important helps students understand why it is important to learn various sub skills and when they are useful. The Jasper adventures are purposely created to reflect the complexity of real world problems.

Within the article it is also noted that Jasper developers are continuing to work with teachers in order to collect “scaffolding” or “guidance” information to include  with the videos. So although the goal of anchored instruction is situated in engaging, problem-rich environments that allow sustained exploration by students and teachers, some purposeful scaffolding and guidance can assist the problem solving process in some situations.

Cognition and Technology Group at Vanderbilt (1992). The jasper experiment: An exploration of issues in learning instructional design. Educational Technology Research and Development, 40(1). pp. 65–80.

Mathematics Instruction for Students with Learning Disabilities-Jasper and Reflections on my Teaching Practice

The article, “Mathematics Instruction for Students with Learning Disabilities: A Meta-Analysis of Instructional Components”, helped me to further analyze the Jasper series and its goals. Within this study the researchers sorted the studies by major types of instructional variables. Their interest was in the detailed curriculum design and teaching practices that resulted in enhanced mathematics and they focussed on the essential attributes of effective practice. They went further and defined “explicit instruction”, which in previous research has shown positive effects in terms of increased understanding of mathematical skills for students with learning disabilities. The researchers broke it down into three components: (a) The teacher demonstrated a step-by-step plan (strategy) for solving the problem, (b) this step-by-step plan needed to be specific for a set of problems (as opposed to a general problem-solving heuristic strategy), and (c) students were asked to use the same procedure/steps demonstrated by the teacher to solve the problem (Gersten, Chard, Jayanthi, Baker, Morphy & Flojo, 2009). They also looked at the methods that exemplify a generic approach for solving a problem, student verbalizations of their mathematical reasoning, using visual representations while solving problems and range and sequence of examples. They further investigated providing ongoing formative assessment data and feedback to teachers on students’ mathematics performance, providing formative assessment data and feedback to students with LD on their mathematics performance and peer-assisted math instruction.

The results of the meta-analysis rendered some interesting data. Firstly, peer assisted learning did not provide much benefit, whereas being tutored by a well-trained older student or adult appears to help significantly (Gersten, et al., 2009). When assisting students with LD in my classroom, this finding is important, as I often pair my students with LD with their peers in order to provide more scaffolding or scaffolding when I am busy helping other students. I will need to rethink this approach.

In addition the two instructional components that provided significant benefits were teaching students to use heuristics (a process or method) to solve problems and explicit instruction (Gersten et al., 2009). When reflecting on these findings I still have some questions. I do teach my LD students a certain process or method to solving mathematical problems but I also don’t want to limit their strategies as we are being told to allow them to explore mathematical problems with a variety of strategies. Now that I think about this, perhaps students with LD do not benefit from a variety of strategies but are best served with a limited number of strategies to use, at least initially. In terms of explicit instruction, I do provide this to my students with LD, although they are also part of any open-ended problem solving that we do in class. I feel it is important to expose them to this type of mathematics as well, but perhaps they would be better served working on other math during this time. That being said, the researchers found that explicit instruction should not be the only form of instruction, so perhaps I should continue to expose the LD students to our open-ended problem solving discussions.

Further findings showed that the use of graphic presentations for illustrative purposes encourages students to think aloud and tends to be effective across disciplines (Gersten et al., 2009).  One caveat seems to be that students should be shown how to use visuals. Also, the visual diagrams resulted in bigger positive effects when visuals were part of a multicomponent approach to instruction.  I do use visuals as a big part of mathematics instruction in my grade 2 class. Students are encouraged to “show what they know” in a variety of ways and visuals is a big part of this. When they explain their thinking visuals provide a map for them to follow and also help them in recognizing errors in their thinking. Providing specific visuals for LD students and showing them explicitly how to use the visuals one the mathematics lesson is completed will be a further goal. They may require further scaffolding, and not just from a peer.

They also found that the sequence of examples is of importance when new skills are being taught, so scaffolding is critical for student success. Examples and problems should move from simple to increasing complexity (Gersten et al., 2009). When reflecting on my own teaching, I find that I do this naturally with all students, as it makes sense to me to move from simple to more complex problems. That being said, and reflecting on the Jasper series, perhaps introducing complex problems that students have to work through and problem solve through may be of more benefit.  The Jasper experiment believes that engaging students in real-world problems that are inherently interesting and important helps students understand why it is important to learn various sub skills and when they are useful. The Jasper adventures are purposely created to reflect the complexity of real world problems (Cognition and Technology Group at Vanderbilt, 1992).  As part of inquiry teaching (a method I use to teach some of the time in my classroom), I often introduce mathematical problems based on math explored in read-alouds. For example, when reading the book “Iron Man” we explored measurement as we explored how big we thought the Iron Man, the science fiction character in the story, would be compared to us as students. So in this way I attempt to introduce concepts that lead the students down possibly unexplored mathematical pathways and see what they can produce. I am left with the wondering: Do LD students benefit from this?

Importantly, the study showed that the process of encouraging students to verbalize their thinking or their strategies, or even the explicit strategies modeled by the teacher, was always effective (Gersten et al., 2009). In my teaching practice I often use verbal understandings to gain a better understanding of student understanding/misunderstanding and for ongoing assessment to move forward. I do this for all students, but particularly for students with LD.

It appears that teachers and students also benefit if the teachers are given specific guidance on addressing instructional needs or curricula so that they can immediately provide relevant instructional material to their student.  Teachers require support!!  This is an important point to discuss as educators are often expected to know what to do in all situations with a variety of different styles of learners, with a variety of curriculum and with a variety of learning abilities. As Schulman (1986) noted in his research, teacher training and the type of training provided needs to be revised to reflect both content and pedagogical knowledge.  The fact of the matter is that educators do not have all of these skills and cannot devote the amount of time required to meet the needs of all students. Teachers require the supports of special education teachers, administration, professional development, etc. in order to gain and implement these skills.  The research further disseminates this as the researchers recommend that providing specific instructional guidelines and curricular materials for teachers  and co-teachers or providing support services, peer tutors, cross-age tutors and/or adults providing extra support would be of direct benefit to students with LD (Gersten, et al., 2009).

Interestingly the researchers found at there seems to be no benefit in providing students with LD-specific feedback that is specifically linked to their goal attainment (Gersten et al., 2009). This seems to refute the feedback loop that we are encouraged to use as educators in order to help students to move forward in their learning. I will have to consider this when providing feedback to LD students. Perhaps spending more time on heuristics and explicit instruction and use of visuals would provide better scaffolding for their learning. I look forward to your thoughts on these points.

References

Cognition and Technology Group at Vanderbilt (1992). The jasper experiment: An exploration of issues in learning instructional design. Educational Technology Research and Development, 40(1). pp. 65–80.

Gersten, R., Chard., D.J., Jayanthi, M., Baker, S.K., Morphy, P., Flojo, J. (2009). Mathematics instruction for students with learning disabilities: A meta-analysis of instructional components. Review of Educational Research, 79(3), 1202-1242.

Shulman, Lee S. (1986). Those who understand: Knowledge growth in teaching.  Educational Researcher, 15(2)., pp. 4-14.

Social Construction of Knowledge

The Jasper materials respond to the issue of students’ inability to transfer knowledge between topics, to deconstruct large problems into smaller tasks, and to deal with the often poorly defined nature of real world problems. In my experience, this has certainly been a problem for students. Fundamentals taught in isolation from real world problems often fail to engage students and result in both poor retention of concepts and the inability to exercise them effectively in unique situations.

The current literature I have read from past/present members of the CTVG and analyses of their work suggest that anchoring skills in an authentic and complex problem is a particularly effective way to promote learning and critical thinking skills. Group work on these problems is a central aspect of the creative problem solving process as students construct their understandings of the problems and their possible solutions and then test them out on each other (social construction of knowledge). The Jasper materials deal with these observations through challenging and complex problems in a video format. The video format may help to eliminate some of the accessibility difficulties of students with reading difficulties (universal design for learning).

The Jasper series of videos appear to be underpinned by two main philosophies: Cognitive Apprenticeship (Brown) and Social Constructive Theory (Zygotsky). The apprenticeship philosophy embraces doing the work of a discipline in an authentic way. In the Jasper video “rescue at Boone Meadow” students are introduced to the types of variables pilots would need to consider when solving a situation in which flight might be the best solution. Social cognitive theory is present in the above notes social construction of knowledge during group work. It is also present in certain teaching approaches to the use of Jasper videos whereby teachers help to point students in the right direction without given them an answer or a walk through. This guiding aspect allowing students to achieve at a higher level reflects Zygotsky’s zone of proximal development.

This series of videos represents several unique affordances for a learning technology. It main aide in preventing premature closing. The extension task prompts students to consider other possible dimensions to the task that may exist in the real world. The development of skills in think beyond the textbook case of a problem are essential to developing good critical reasoning and planning. Socially, it offers a look ahead of its time to crowd sourcing. The unique experiences of the group members around similar real world situations may yield unexpected and intriguing solutions.

In terms of conceptions vs. misconceptions, these videos present a situation that must be carefully managed. By interacting with each other students will either ameliorate or exacerbate each others’ misconceptions. Students with firm and correct conceptions may help other students to revise their misconceptions but, conversely, students with strong alternative conceptions more closely rooted in their everyday experience may convince other students to abandon correct conceptions for more viable seeming misconceptions. Frequent perception checks from teacher would be necessary in using these materials.

Unfortunately, I did not run across a lot of efficacy studies in the readings I chose this week. In choosing the design a TELE final project I was more interested in reading about design principals. I am looking forward to seeing some blog posts from the people who may have come across these studies.

Authentic Learning: Revisited

Based on three readings from this week, the Jasper materials seem to be responding to the issue of inauthentic learning in mathematics. That is, teachers seem to be emphasizing the importance of mathematical facts and fluency, which has caused several additional problems of student learning including: lack of problem solving skills (CTGV, 1992a), lack of motivation and engagement (Hasselbring, Lott & Zydney, 2005), an increasing gap between low and high performers (Hickey, Moore & Pellegrin, 2001), as well as low scores on standardized achievement tests (Hasselbring et al., 2005). I agree on the relevance of this issue because problem solving has always been a skill students have struggled with and that though students excel at drill and practice equations, they are somehow unable to translate these strengths into hypothetical word problems. At the same time, these word problems are confounding because it requires students with adequate reading comprehension abilities but then additionally are irrelevant and not applicable to real life situations. On the contrary, authentic learning includes the development of core skills of mathematics in the context of meaningful solving activities (CTGV, 1992a). The Jasper Project addresses these issues because it teaches students to identify and define issues, to participate in collaborative problem solving, and to actively construct of knowledge about mathematical concepts.

Cognition and Technology Group at Vanderbilt (1992a). The Jasper experiment: An exploration of issues in learning and instructional design. Educational Technology, Research and Development, 40(1), 65-80.

Hasselbring, T. S., Lott, A. C., & Zydney, J. M. (2005). Technology-supported math instruction for students with disabilities: Two decades of research and development.

Hickey, D.T., Moore, A. L. & Pellegrin, J.W. (2001). The motivational and academic consequences of elementary mathematics environments: Do constructivist innovations and reforms make a difference? American Educational Research Journal, 38(3), 611-652.