Biology Program and Sustainability Pathway Learning Objectives (Biology Program in <u>black</u>, Sustainability Pathway in <u>green</u>)

A: Scientific/Sustainability Literacy

- A.1. <u>Recognize</u>, <u>state</u> or <u>describe</u> selected current consensus knowledge in a particular biology content area.
- A.1.a. <u>Apply</u> core concepts of ecology relevant to environmental sustainability.
- A.2. <u>Recognize</u> biology as an interdisciplinary science and <u>integrate</u> other disciplines into biology.
- A.3. <u>Recognize</u>, <u>state</u>, or <u>describe</u> the <u>experimental</u>, <u>observational</u> or <u>theoretical</u> evidence (both pro and con) relevant to the current consensus knowledge in a particular biology content area.
- A.3.a. <u>Describe</u> and <u>evaluate</u> methodologies/technologies used in modern conservation biology.
- A.4. Appreciate organismal biodiversity from evolutionary, ecological and taxonomic perspectives and be able to <u>place</u> organisms and model experimental systems in the larger context of life on earth.
- A.5. <u>Demonstrate</u> proficient library and computer skills for information gathering and analysis.
- A.5.a. <u>Summarize</u> key literature, used in a chosen field, related to research approaches to sustainability issues.
- A.6. <u>Locate, manage</u> and <u>coordinate</u> information gathered from multiple sources required to complete a specific task.
- B: Scientific/Sustainability Research Enterprise as a Way of Knowing
- B.1. Demonstrate skills in observation and comparison
- B.2. Make predictions using previously acquired knowledge.
- B.2.a. Predict environmental scenarios based on past and present trends.
- B.3. Select the appropriate experimental system
- B.3.a. <u>Identify</u> appropriate methodologies for environmental research and restoration.
- B.4. <u>Demonstrate</u> proficient laboratory skills.
- B.5. <u>Apply</u> mathematical and/or statistical reasoning to analyze data and interpret graphs.
- B.6. Make inferences from data analysis.
- B.7. Formulate, analyze and evaluate a scientific hypothesis.
- B.8. <u>Design</u> and <u>conduct</u> an experiment, <u>collect</u> and <u>analyze</u> the data, <u>interpret</u> the results and <u>format</u> them in writing.
- B.8.a. <u>Apply</u> methods to <u>measure</u>, <u>monitor</u>, and <u>evaluate</u> impacts of human activities on specific environments.

C: Analytical, Critical Thinking and Problem Solving Skills

- C.1. Compare and interpret observations.
- C.2. <u>Identify</u> unifying principles and repeatable patterns in biology.
- C.2.a. <u>Identify</u> solutions for complex multi-faceted problems within paradigms of uncertainty and unpredictability
- C.3. <u>Analyze</u> a scientific paper and <u>determine</u> whether its conclusions are

well supported.

- C.3.a. <u>Conduct</u> a risk assessment of an environmental situation using interdisciplinary criteria.
- C.3.b. <u>Apply</u> knowledge and understanding to action and commitment using change-agent strategies.

D. Communication and Interpersonal Skills

- D.1. <u>Communicate</u> effectively (both orally and in writing) using the language and forms of biology appropriate for both a scientific and lay audience.
- D.1.a. <u>Communicate</u> sustainability issues and principles clearly and precisely both orally and in writing.

D.2. Work together as a team.

- D.2.a. <u>Participate</u> in an interdisciplinary team that builds consensus strategies, encourages participation of all members, and integrates ideas and perspectives of others.
- D.3. Promote actions for positive change.
- D.4. Engage in civic and community discourse and debate.
- D.5. Apply strategies for cooperative conflict resolution.
- D.6. Lead as well as follow.

E. Scientific/Sustainability Ethics

- E.1. Practice science in an ethical context.
- E.1.a. <u>Make</u> ethical decisions by incorporating responsibility to self, community, society, and environment.
- E.2. <u>Critically assess</u> the implications of scientific knowledge in social context.
- E.3. <u>Explain</u> impacts, trade-offs, feedback and unintended consequences of individual and collective actions on human and natural systems.

F. Sustainability Focus

- F.1. <u>Develop</u> a working definition of sustainability and <u>evaluate</u> alternative definitions (e.g. UBC, Brundland, Natural Step, Triple Bottom Line)
- F.2. <u>Identify</u> key concepts of sustainability (carrying capacity, limits to growth, ecological footprint, sustainable consumption, needs and rights, diversity)
- F.3. Explain the historical context of sustainability
- F.4. Explain systems thinking in relation to sustainability and apply a systems thinking approach that supports interconnections between environment, economy, and society (include trade-offs, feedbacks, and unintended consequences of actions both individual and collective).
- F.5. <u>Conduct</u> a community-based (real world) project using academic knowledge in a collaborative academically diverse setting.
- F.6. <u>Assess</u> how stakeholders engage in sustainable development issues (stakeholders include First Peoples, government agencies business, industry, NGOs, scientific and technological communities).
- F.7. <u>Identify</u> spatial and temporal scales when considering social and natural systems (locally, regionally, and globally).
- F.8. <u>Explain</u> the impacts of economic policy and cultural norms on sustainable consumption and healthy ecosystems.
- F.9. <u>Identify</u> societal visions of the future and develop strategies and

evaluative techniques for realizing these goals.

- F.10. <u>Explain</u> how concepts of sustainability are connected to issues of social justice, the environment, and the economy.
- F.11. <u>Critically reflect</u> on the role, influence, benefits and limitations of science and technology where human activity and natural systems intersect.
- F.12. <u>Formulate</u> personal lifestyle practices that align with sustainability values

