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Why interesting?

Let U be an bounded domain in R"”. We will consider a
modification of the well known heat equation with homogeneous
Dirichlet boundary conditions and given initial condition vy and
force term f.

Oru(t) — Au=f(t), inUx(0,T)

u(0, x) = up(x), in U (1)
u(t) =0, on (0, T) x oU.
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Why interesting?

Examples: Why should we add randomness to model?
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Why interesting?

Examples: Why should we add randomness to model?

i) Heat is motion of atoms. We can interpret heat transfer as
random collisions of particles.

path of a 3D-standard-Brownian motion
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Why interesting?

Examples: Why should we add randomness to model?

ii) Heat flow in objects that are not made of a uniform material
or that follow a diffusion.

Object that is not made of a uniform material

XZ axs
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Theoretical foundation

We are interested in the case when the force term is random.

Oru(t) — Au = W(t,x,w), inUx(0,T)
u(0, x) = uo(x), in U (2)
u(t) =0, on (0, T) x 9U.

Rather than understanding u as a function of time and space we
want to see it as a H = L?(D)-valued stochastic process.

We want to write
du = Audt + odW; (3)

Or in integral form

t t
us = U +/ Ausds +/ odW;s (4)
0 0

Note that the Integral is a priori not defined since the Q-Wiener
process is of infinite variation! — generalized Ito Integral
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Why interesting? Theoretical foundation FDM implementation in 2D FEM implementation in 3D Literature

Definition (Notation for Solutions of Stochastic Heat)

A predictable H-valued Process {u; : t € [0, T]} is called a strong
solution of the stochastic heat equation if

t t
Uy = U —|—/ Ausds —i—/ odWs, P —a.s., (5)
0 0
weak solution of the stochastic heat equation if for all v € D(A) :
t t
(e, v) = (1, v>+/ —<us,Av>ds—|—/ (odW,,v), P—as. (6)
0 0
and mild solution of the stochastic heat equation if

t
uy = e Py + / e (=) 26dW,, P —as. (7)
0
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Theoretical foundation

Let (Q, F,P) be a probability space and (E, ) be a measurable
space.

X :Q — E is called E-valued random variable if X is
F-measurable.

Often we consider cases where £ = R or E = R9. We will instead
consider the case where E = H for a general Hilbert space with the
Borel o algebra & = B(H).

Tim Jaschek

Probability meets PDEs: The Numerics of Stochastic Heat Equation



Why intere g? Theoretical foundation FDM implementation in 2D FEM impleme

Definition (LP(Q2, H))

The space LP(£2, H) is the space of H-valued F-measurable random
variables with finite p-th moment. It is Banach with the norm

Xl e my = (/Q HX(w)||’,i,dP(w)>P =E [||X||';,ﬁ, (8)

For p = 2 this space is Hilbert with inner product

(X, Y)1o(,H) :=/9<X(W)aY(W)>HdP(w) =E[(X;Y)n]. (9)
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Why interesting? Theoretical foundation FDM implementation in 2D FEM implementation in 3D Literature

Definition (Covariance Operator)

Let H be a Hilbert space. A linear operator C : H — H is the
covariance of H-valued randomvariables X and Y iff

(Co, ) = Cov ({X, @)u, (Y, ¥)h), Vo, e H. (10)

Definition (H-valued Gaussian random variable)

An H-valued random variable X is called Gaussian iff (X, ¢)2(q 1)
is a real valued Gaussian random variable for all ¢ € H.

Let X be an H-valued Gaussian with j1 = E [X]. Then
X € L%(Q, H) and the covariance operator C of X is well-defined
trace class operator. We write X ~ N (p,C).
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Why interesting? Theoretical foundation FDM implementation in 2D FEM implementation in 3D Literature

Let Q € L(H, H) be non-negative definite, symmetric and such
that there exists an orthonormal basis {¢; : i € N} of
eigenfunctions with corresponding eigenvalues A; > 0 such that

ZieN A < 00.

Definition (Q-Wiener Process)

A H-valued stochastic process {W; : t > 0} is called Q-Wiener
Process if

i) Wo=0as.,
i) W; is a continious function Ry — H for each w € Q,

iii) W; is Fi-adapted and W; — W is independent of F; for
s <t,

iv) Wy — W ~N(0,(t—5s)Q) forall 0 <s <t
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Theoretical foundation

Brownian Motion via Karhunen-Loeve Approx. for n = 1000
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Theoretical foundation

Multivariate Karhunen-Loéve Expansion of a path of a Brownian Sheet Z
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Theoretical foundation

Theorem (Karhunen-Loéve Expansion for Q-Wiener Process)

Let @ statisfy our basic assumptions. Then W; is a Q-Wiener
Process if and only if

W; = Z ﬂgp,ﬂg) a.s. (11)
i=1

where 8) are i.i.d. Fy-Brownian motions and the series converges
in L2(Q, H). Moreover it converges in L%(Q,C([0, T], H)).
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Theoretical foundation

We define the stochastic integral with respect to a Q-Wiener
Process as

t > t :
/ XedWs =Y "/ Nigj / XsdpL?, (12)
0 i=1 0

where the integrals with respect to Brownian motion are so called
[t6 integrals. They are limits in L? and not pathwise integrals! It

holds
) .
lim su X (n B(in) —B(in) )—/ X,dBSi) =0 (13
”_’OOSSE ; t,(()< tl(<+)1/\s t}( IAs 0 ( )
in probability.
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Why interesting? Theoretical foundation FDM implementation in 2D FEM implementation in 3D

The most interesting case is when @ = /. However, our definition
of a Q- Wiener process doesn't work anymore since / is not trace
class.

Definition (space-time white noise)

The cylindrical Wiener process (also called space-time white noise)
is the H-valued stochastic process W; defined by

We=>"¢iB?, (14)
i=1

in L2(Q, H) where {¢; : i > 0} is any orthonormal basis of H and
B() are iid. Brownian motions.
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FDM implementation in 2D

We take U = (0, 7). Then —A has eigenfunctions and eigenvalues
wi(x) = /2/7sin(ix), A= 02,

Let now W be a Q-Wiener process be such that @ has the same
eigenfunctions as —A with corresponding eigenvalues &;. Then for
v € D(A) a weak solution statisfies:

t
<Ut, V>L2(U) = <U()7 V>L2(U) + /0 <—U5, AV>L2(U)dS
00 t .
+ Z/ o\/Eilpi, v)dBY
i=1 70

Expand u; =Y 72, 0§i)g0,- for 050 = (U, ¥i) 12(v)-

Tim Jaschek
Probability meets PDEs: The Numerics of Stochastic Heat Equation



Then for v € D(A) a weak solution statisfies:
t
(ut, V>L2(U) = <UO, V>L2(U) + /0 <*U5,AV>L2(U)d5
o t i
+ Y [Covaten et
i=1 70
Expand u; =Y 02, ug )go, for aE") = (ur, pi)2(u)- Take v = ¢; to

see
o) = gl — / Al ds+/ o\/&dBL) (15)
0
Hence () statisfies the SODE (Ornstein-Uhlenbeck Process)

dio) = _)\,-a(")dt+a\/gd8,£i). (16)
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FDM implementation in 2D

Hence (") statisfies the SODE (Ornstein-Uhlenbeck Process)
di) = —x;0dt + o/&dBY. (17)

One can show that Var(ut )) = U—g’(l — e72Xt) and thus by
Parseval's identity

HUt”L2 Q,12(0,7))

B2 10 ] ZZf’( —e ) (19)

=1 i=1

which converges if z,oil &i/Ai is finite, which is the case since Q is
trace class.
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FDM implementation in 2D

Paths of Ohrnstein-Uhlenbeck processes associated to the heat equation
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FDM implementation in 2D

FDM Solution Stochastic Heat Equation with o =0
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FDM implementation in 2D

FDM Solution Stochastic Heat Equation with o = 0.2
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FDM implementation in 2D

FDM Solution Stochastic Heat Equation with o = 0.6
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FDM implementation in 2D

Heat Flow for Variances o = 0, 0.2, 0.6 in Comparison
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FEM implementation in 3D

Now let U = (0,7) x (0, 7). One can show that —A as
eigenvalues \;j = i2 + j2. Again let us assume that @ has the
same eigenfunctions but with corresponding eigenvalues ¢&; ;.

dal) = — X ;a0 dt + o\ /€dBID. (19)

Once again let us apply Parseval's identity to obtain

2 ST R R S PP
luelFao,2(0mxiomy = B | D 18717 = Y 53 (1-e72451)
< — 2\
ij=1 ij=1
(20)
This justifies that u is in L2(Q, L2((0,7) x (0,7))) since Q is trace
class. However, for a cylindrical Wiener Process
[e.e] oo

1 1
2Tl m s> (21)

ij=1"" ij=1

Which implies that there exists no weak solution in.this case.
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FEM implementation in 3D
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Temperature Field | t = 0.03000
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All figures and videos are generated using MATLAB.
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