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Let U be an bounded domain in Rn. We will consider a
modification of the well known heat equation with homogeneous
Dirichlet boundary conditions and given initial condition u0 and
force term f .





∂tu(t)−∆u = f (t), in U × (0,T )
u(0, x) = u0(x), in U
u(t) = 0, on (0,T )× ∂U.

(1)
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Examples: Why should we add randomness to model?
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Examples: Why should we add randomness to model?

i) Heat is motion of atoms. We can interpret heat transfer as
random collisions of particles.
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Examples: Why should we add randomness to model?

ii) Heat flow in objects that are not made of a uniform material
or that follow a diffusion.
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We are interested in the case when the force term is random.




∂tu(t)−∆u = W (t, x , ω), in U × (0,T )
u(0, x) = u0(x), in U
u(t) = 0, on (0,T )× ∂U.

(2)

Rather than understanding u as a function of time and space we
want to see it as a H = L2(D)-valued stochastic process.
We want to write

du = ∆udt + σdWt (3)

Or in integral form

ut = u0 +

∫ t

0
∆usds +

∫ t

0
σdWs (4)

Note that the Integral is a priori not defined since the Q-Wiener
process is of infinite variation! → generalized Itô Integral
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Definition (Notation for Solutions of Stochastic Heat)

A predictable H-valued Process {ut : t ∈ [0,T ]} is called a strong
solution of the stochastic heat equation if

ut = u0 +

∫ t

0
∆usds +

∫ t

0
σdWs , P− a.s., (5)

weak solution of the stochastic heat equation if for all v ∈ D(∆) :

〈ut , v〉 = 〈u0, v〉+
∫ t

0
−〈us ,∆v〉ds+

∫ t

0
〈σdWs , v〉, P−a.s., (6)

and mild solution of the stochastic heat equation if

ut = e−t∆u0 +

∫ t

0
e−(t−s)∆σdWs , P− a.s.. (7)
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Let (Ω,F ,P) be a probability space and (E , E) be a measurable
space.
X : Ω→ E is called E-valued random variable if X is
F-measurable.
Often we consider cases where E = R or E = Rd . We will instead
consider the case where E = H for a general Hilbert space with the
Borel σ algebra E = B(H).
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Definition (Lp(Ω,H))

The space Lp(Ω,H) is the space of H-valued F-measurable random
variables with finite p-th moment. It is Banach with the norm

‖X‖Lp(Ω,H) :=

(∫

Ω
‖X (ω)‖pHdP(ω)

) 1
p

= E
[
‖X‖pH

] 1
p . (8)

For p = 2 this space is Hilbert with inner product

〈X ,Y 〉Lp(Ω,H) :=

∫

Ω
〈X (ω),Y (ω)〉HdP(ω) = E [〈X ,Y 〉H ] . (9)
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Definition (Covariance Operator)

Let H be a Hilbert space. A linear operator C : H → H is the
covariance of H-valued randomvariables X and Y iff

〈Cφ, ψ〉H = Cov (〈X , φ〉H , 〈Y , ψ〉H) , ∀φ, ψ ∈ H. (10)

Definition (H-valued Gaussian random variable)

An H-valued random variable X is called Gaussian iff 〈X , φ〉L2(Ω,H)

is a real valued Gaussian random variable for all φ ∈ H.

Theorem

Let X be an H-valued Gaussian with µ = E [X ]. Then
X ∈ L2(Ω,H) and the covariance operator C of X is well-defined
trace class operator. We write X ∼ N (µ, C).
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Let Q ∈ L(H,H) be non-negative definite, symmetric and such
that there exists an orthonormal basis {ϕi : i ∈ N} of
eigenfunctions with corresponding eigenvalues λi ≥ 0 such that∑

i∈N λi <∞.

Definition (Q-Wiener Process)

A H-valued stochastic process {Wt : t ≥ 0} is called Q-Wiener
Process if

i) W0 = 0 a.s.,

ii) Wt is a continious function R+ → H for each ω ∈ Ω,

iii) Wt is Ft-adapted and Wt −Ws is independent of Fs for
s ≤ t,

iv) Wt −Ws ∼ N (0, (t − s)Q) for all 0 ≤ s ≤ t.
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Theorem (Karhunen-Loève Expansion for Q-Wiener Process)

Let Q statisfy our basic assumptions. Then Wt is a Q-Wiener
Process if and only if

Wt =
∞∑

i=1

√
λiϕiβ

(i)
t a.s. (11)

where β(i) are i.i.d. Ft-Brownian motions and the series converges
in L2(Ω,H). Moreover it converges in L2(Ω, C([0,T ],H)).
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We define the stochastic integral with respect to a Q-Wiener
Process as

∫ t

0
XsdWs :=

∞∑

i=1

√
λiϕi

∫ t

0
Xsdβ

(i)
s , (12)

where the integrals with respect to Brownian motion are so called
Itô integrals. They are limits in L2 and not pathwise integrals! It
holds

lim
n→∞

sup
s≤t

∣∣∣∣
p(n)∑

k=1

X
t

(n)
k

(
B

(i)

t
(n)
k+1∧s

− B
(i)

t
(n)
k ∧s

)
−
∫ t

0
XrdB

(i)
r

∣∣∣∣ = 0 (13)

in probability.
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The most interesting case is when Q = I . However, our definition
of a Q- Wiener process doesn‘t work anymore since I is not trace
class.

Definition (space-time white noise)

The cylindrical Wiener process (also called space-time white noise)
is the H-valued stochastic process Wt defined by

Wt =
∞∑

i=1

ϕiB
(i)
t , (14)

in L2(Ω,H) where {ϕi : i > 0} is any orthonormal basis of H and
B(i) are iid. Brownian motions.
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We take U = (0, π). Then −∆ has eigenfunctions and eigenvalues

ϕi (x) =
√

2/π sin(ix), λi = i2.

Let now W be a Q-Wiener process be such that Q has the same
eigenfunctions as −∆ with corresponding eigenvalues ξi . Then for
v ∈ D(∆) a weak solution statisfies:

〈ut , v〉L2(U) = 〈u0, v〉L2(U) +

∫ t

0
〈−us ,∆v〉L2(U)ds

+
∞∑

i=1

∫ t

0
σ
√
ξi 〈ϕi , v〉dB(i)

s

Expand ut =
∑∞

i=1 û
(i)
t ϕi for û

(i)
t := 〈ut , ϕi 〉L2(U).
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Then for v ∈ D(∆) a weak solution statisfies:

〈ut , v〉L2(U) = 〈u0, v〉L2(U) +

∫ t

0
〈−us ,∆v〉L2(U)ds

+
∞∑

i=1

∫ t

0
σ
√
ξi 〈ϕi , v〉dB(i)

s

Expand ut =
∑∞

i=1 û
(i)
t ϕi for û

(i)
t := 〈ut , ϕi 〉L2(U). Take v = ϕi to

see

û
(i)
t = û

(i)
0 −

∫ t

0
λi û

(i)
s ds +

∫ t

0
σ
√
ξidB

(i)
s (15)

Hence û(i) statisfies the SODE (Ornstein-Uhlenbeck Process)

dû(i) = −λi û(i)dt + σ
√
ξidB

(i)
t . (16)
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Hence û(i) statisfies the SODE (Ornstein-Uhlenbeck Process)

dû(i) = −λi û(i)dt + σ
√
ξidB

(i)
t . (17)

One can show that Var(û
(i)
t ) = σ2ξi

2λi
(1− e−2λi t) and thus by

Parseval’s identity

‖ut‖2
L2(Ω,L2(0,π)) = E

[ ∞∑

i=1

|û(i)
t |2

]
=
∞∑

i=1

σ2ξi
2λi

(1− e−2λi t) (18)

which converges if
∑∞

i=1 ξi/λi is finite, which is the case since Q is
trace class.

Tim Jaschek

Probability meets PDEs: The Numerics of Stochastic Heat Equation



Why interesting? Theoretical foundation FDM implementation in 2D FEM implementation in 3D Literature

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time

-1

0

1

2

3

4

5

6

7
Paths of Ohrnstein-Uhlenbeck processes associated to the heat equation

Tim Jaschek

Probability meets PDEs: The Numerics of Stochastic Heat Equation



Why interesting? Theoretical foundation FDM implementation in 2D FEM implementation in 3D Literature

0
0

0.2

0.4

0.6

0.8

1

0.05
32.521.510.50.1 0

Tim Jaschek

Probability meets PDEs: The Numerics of Stochastic Heat Equation



Why interesting? Theoretical foundation FDM implementation in 2D FEM implementation in 3D Literature

0
0

0.2

0.4

0.6

0.8

0.05

1

3
2.5

2
1.5

1
0.50.1 0

Tim Jaschek

Probability meets PDEs: The Numerics of Stochastic Heat Equation



Why interesting? Theoretical foundation FDM implementation in 2D FEM implementation in 3D Literature

0
0

0.2

0.4

0.6

0.8

1

0.05
32.521.510.50.1 0

Tim Jaschek

Probability meets PDEs: The Numerics of Stochastic Heat Equation



Why interesting? Theoretical foundation FDM implementation in 2D FEM implementation in 3D Literature

Tim Jaschek

Probability meets PDEs: The Numerics of Stochastic Heat Equation



Why interesting? Theoretical foundation FDM implementation in 2D FEM implementation in 3D Literature

Now let U = (0, π)× (0, π). One can show that −∆ as
eigenvalues λi ,j = i2 + j2. Again let us assume that Q has the
same eigenfunctions but with corresponding eigenvalues ξi ,j .

dû(i ,j) = −λi ,j û(i ,j)dt + σ
√
ξi ,jdB

(i ,j)
t . (19)

Once again let us apply Parseval’s identity to obtain

‖ut‖2
L2(Ω,L2((0,π)×(0,π))) = E



∞∑

i ,j=1

|û(i ,j)
t |2


 =

∞∑

i ,j=1

σ2ξi ,j
2λi ,j

(1−e−2λi,j t)

(20)
This justifies that u is in L2(Ω, L2((0, π)× (0, π))) since Q is trace
class. However, for a cylindrical Wiener Process

∞∑

i ,j=1

1

λi ,j
=
∞∑

i ,j=1

1

i2 + j2
=∞, (21)

Which implies that there exists no weak solution in this case.
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Abstract

The stochastic heat equation models a heat flow in a material disturbed by
a space-time white noise.
To make sense of the stochastic heat equation, the Q-Wiener Process and
a generalization of the Itô-Integral with respect to this process will be
introduced. Those will lead us to a beautiful relation of weak solutions to
the stochastic heat equation in one spacial dimension and the Ornstein-
Uhlenbeck Process, a well known Itô-Diffusion process.
Finally, this poster presents numerical solutions to the stochastic heat equa-
tion in one and two spacial dimensions using both, finite elements and finite
difference method.

The Problem and Definition of Solutions

Let U be an bounded domain in Rn. We will consider a modification of the
well known heat equation with homogeneous Dirichlet boundary conditions
and given initial condition u0 and random force term W .




∂tu(t)−∆u = W (t, x, ω), in U × (0, T )
u(0, x) = u0(x), in U
u(t) = 0, on (0, T )× ∂U.

(1)

Since the force term is a stochastic process, a solution to the stochastic
heat equation will be a stochastic process as well.
Notation for Solutions of Stochastic Heat
The lack of regularity of many stochastic processes will require very weak
notations of solutions. A predictable H-valued Process {ut : t ∈ [0, T ]}
with ut ∈ L2(Ω, H) is called a strong solution of the stochastic heat
equation if

ut = u0 +

∫ t

0
∆usds +

∫ t

0
σdWs, P− a.s., (2)

a weak solution of the stochastic heat equation if for all v ∈ D(∆) :

〈ut, v〉 = 〈u0, v〉 +

∫ t

0
−〈us,∆v〉ds +

∫ t

0
〈σdWs, v〉, P− a.s., (3)

and a mild solution of the stochastic heat equation if

ut = e−t∆u0 +

∫ t

0
e−(t−s)∆σdWs, P− a.s.. (4)

Where e−t∆ denotes the semigroup generated by ∆.

The Random Force Term

To model the noise we will use a
so called Q-Wiener Process. This
is an L2(D)-valued stochastic pro-
cess. This figure shows a simulation of
the process in a very illustrative way.
Imagine dimension 2 is the time di-
mension. For each fixed time step you
will obtain the graph of an element in
L2(D). In this case, the operator Q is
an integraloperator associated to the
covariance function of Brownian mo-
tion.

Simulations in One Spacial Dimension using Finite Difference Method

0
0

0.2

0.4

0.6

0.8

1

0.05
32.521.510.50.1 0

0
0

0.2

0.4

0.6

0.8

0.05

1

3
2.5

2
1.5

1
0.50.1 0

0
0

0.2

0.4

0.6

0.8

1

0.05
32.521.510.50.1 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time

-1

0

1

2

3

4

5

6

7
Paths of Ohrnstein-Uhlenbeck processes associated to the heat equation

Important Definitions and Theorems

Rather than seeing u as a function of time and space we want to see it as a L2(D)-valued stochastic process. The random force term will defined as follows

Assumption on Q Let Q ∈ L(H,H) be non-
negative definite, symmetric and such that there
exists an orthonormal basis {ϕi : i ∈ N} of eigen-
functions with corresponding eigenvalues λi ≥ 0
such that

∑
i∈N λi <∞.

Q-Wiener Process A H-valued stochastic pro-
cess {Wt : t ≥ 0} is called Q-Wiener Process if

i) W0 = 0 a.s.,

ii) Wt is a continious function R+ → H for each
ω ∈ Ω,

iii) Wt is Ft-adapted and Wt−Ws is independent
of Fs for s ≤ t,

iv) Wt −Ws ∼ N (0, (t− s)Q) for all 0 ≤ s ≤ t.

Karhunen-Loève Expansion for Q-Wiener
Process Let Q statisfy our basic assumptions.
Then Wt is a Q-Wiener process if and only if

Wt =

∞∑

i=1

√
λiϕiβ

(i)
t a.s. (5)

where β(i) are i.i.d. Ft-Brownian motions and the

series converges in L2(Ω, H). Moreover it converges
in L2(Ω, C([0, T ], H)).
Stochastic Integral with respect to a Q-
Wiener Process Using the Karhunen-Loève Ex-
pansion we define

∫ t

0
XsdWs :=

∞∑

i=1

√
λiϕi

∫ t

0
Xsdβ

(i)
s , (6)

where the integrals with respect to Brownian mo-
tion are so called Itô integrals.

Simulations in Two Spacial Dimensions using Finite Element Method

The theoretical section to the stochastic heat equa-
tion in 2D shows, that there does not exist a weak
solution when the force term is space-time white
noise. However, since our numerical method in-
terpolates in between discretization steps we can
still obtain an interesting result. Unfortunately,
we can not present a time-changing simulation of
the numerical solution on a poster. Let us at least
have a look on a fixed time step. Whereas the plot
on the left is obtained by solving the equation with
σ = 0, the on the right is result when we let the
force term be random.

The Stochastic Heat Equation in 1D

We take U = (0, π). Then −∆ has eigenfunctions and eigenvalues

ϕi(x) =
√

2/π sin(ix), λi = i2.

Let now W be a Q-Wiener process be such that Q has the same eigen-
functions as −∆ with corresponding eigenvalues ξi. Then for v ∈ D(∆) a
weak solution statisfies:

〈ut, v〉L2(U) = 〈u0, v〉L2(U) +

∫ t

0
〈−us,∆v〉L2(U)ds

+

∞∑

i=1

∫ t

0
σ
√
ξi〈ϕi, v〉dB(i)

s .

Expand ut =
∑∞
i=1 û

(i)
t ϕi for û

(i)
t := 〈ut, ϕi〉L2(U) and take v = ϕi to see

û
(i)
t = û

(i)
0 −

∫ t

0
λiû

(i)
s ds +

∫ t

0
σ
√
ξidB

(i)
s . (7)

Hence û(i) is an Ornstein-Uhlenbeck Process. To simulate a weak solution
to the stochastic heat equation we can thus simulate Ornstein Uhlenbeck
Processes and compute the truncated sum in the above equation. One can

show that Var(û
(i)
t ) = σ2ξi

2λi
(1− e−2λit) and thus by Parseval’s identity

‖ut‖2L2(Ω,L2(0,π))
= E



∞∑

i=1

|û(i)
t |2


 =

∞∑

i=1

σ2ξi
2λi

(1− e−2λit) (8)

which converges if
∑∞
i=1

ξi
λi
<∞ , which is the case since Q is trace class.

The Stochastic Heat Equation in 2D

Now let U = (0, π) × (0, pi). One can show that −∆ as the eigenvalues
λi,j = i2 + j2. Again, let us assume that Q has the same eigenfunctions
but with corresponding eigenvalues ξi,j. Expand and substitute to see

dû(i,j) = −λi,jû(i,j)dt + σ
√
ξi,jdB

(i,j)
t . (9)

Once again, let us apply Parseval’s identity to obtain

‖ut‖2L2(Ω,L2((0,π))×(0,π)
= E



∞∑

i,j=1

|û(i,j)
t |2


 =

∞∑

i,j=1

σ2ξi,j
2λi,j

(1− e−2λi,jt).

(10)
This justifies that u is in L2(Ω, L2((0, π) × (0, π)) since Q is trace class.
However, for a cylindrical Wiener Process there is no solution since

∞∑

i,j=1

1

λi,j
=

∞∑

i,j=1

1

i2 + j2
=∞. (11)
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