
Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 1

ELEC 490/492/498/499 Final Report

Discontinuity Handling In

Single-Bit Audio Applications

Submitted by:

Group #25

Moorthy, Theepan

Nasr, Amr

Nasr, Sherif

Faculty Supervisor:

Dr. Sudharsanan

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 2

Executive Summary

Currently a new audio CD format is emerging in the market, known as the Super Audio

CD format (SACD), patented by Sony – Philips corporations. This new audio processing

technology so far has been implemented (i.e. SACD processors) by Sony and Philips

only. However, there exists a demand for other companies to produce SACD processors,

hence our project to design a specific functionality of an SACD processor.

 The SACD format uses a new technology for recording and reproducing music digitally

known as Direct Stream Digital (DSD, trademarked by Sony/Philips). DSD technology is

radically different relative to the existing Pulse Code Modulation (PCM) technology for

recording and reproducing music in that it functions entirely in a one-bit domain. The

problem with designing an SACD processor is that presently no established standard

methods of handling one-bit stream audio signals exist, as they do for the PCM domain.

Brand new processing methodologies are required to handle even basic features such as

muting, pausing, and skipping music tracks. Our project specifically resolves the problem

of pausing and un-pausing a DSD music signal smoothly (i.e. without any audible clicks

even at high volume levels). More technically stated, this project deals with distortion

free handling of a user-imposed discontinuity in a DSD stream. Our solution to this

problem consisted of developing an actual hardware implementation that will handle the

pause/un-pause functionality, based upon current literature and research papers that

document theories on manipulating one-bit signals. More specifically, the hardware is a

FPGA platform based implementation.

Evaluation of the designed hardware was analyzed through simulation waveform tests to

verify functionality. Specifically the original DSD waveform was compared to the final

DSD waveform output from our system to verify, even after our pause/un-pause

functionality, that the signal remained distortion free. The waveforms proved that this

was the case, and our design is set to be downloaded to an actual FPGA chip as future

work.

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 3

TABLE OF CONTENTS

EXECUTIVE SUMMARY……………………………………………………….2

TABLE OF CONTENTS………………………………………………………….3

1. INTRODUCTION……………………………………………………………...4

1.1 Purpose………………………………………………………………………...4

1.2 Background and Objectives……………………………………………………4

1.3 Overview of Project Work……………………………………………………..6

2. BACKGROUND AND MOTIVATION………………………………………..6

2.1 General…………………………………………………………………………6

2.2 Interface and/or Performance Specifications…………………………………..7

3. DESIGN AND PRODUCTION APPROACH………………………………….8

3.1 Design Requirements…………………………………………………………..8

3.2 Division of Labor………………………………………………………………10

3.3 Design Methods………………………………………………………………..11

4. TESTING, EVALUATION AND RESULTS………………………………….13

4.1 Testing using Matlab…………………………………………………………..13

4.2 Testing of the Accumulator in Altera………………………………………….15

4.3 Evaluation in Altera……………………………………………………………16

4.4 Software Simulation Results…………………………………………………...18

5. CONCLUSION………………………………………………………………….19

6. REFERENCES…………………………………………………………………..21

APPENDIX A Matlab Files .………………………………………………………22

APPENDIX B Altera File..…………………………………………………………27

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 4

1. INTRODUCTION

1.1 Purpose

The objective of this report is to deliver a summary of the work and results of the ELEC

490/492/498 project committed to by Group #25. This report is primarily directed

towards ELEC 498’s course instructors, our Faculty Supervisor Dr. Sudharsanan, as well

as future ELEC 490/492/498 project groups.

1.2 Background and Objectives

Today leading audio companies are striving for a new technology triggered by the idea of

having an audio CD with DVD audio quality (i.e. premixed settings, surround sound,

etc…). There exist two main camps of companies within the industry each battling to get

to that goal via two opposing routes. One of the camps still bases its research on the Pulse

Code Modulation scheme (PCM), which is what we still listen to today (audio signals are

sampled at 44.1 kHz). Their research and development simply consists of increasing the

sampling rate (88.2 kHz) and therefore increasing the number of bits representing the

analog signal, thus representing the analog signal more accurately (16, 32, 64, etc…). The

other camp, on the other hand, consisting of Sony – Philips, decided to come up with a

revolutionary scheme to better map out the analog audio signal: the Direct Stream

Digital. Their work and code still remains a trade secret today aiming to incite a third

party to compete in order for the new technology to be marketable, which motivated our

group to derive a general solution irrelevant of Sony-Philips’ encoding methodologies.

 The analog signal is represented in a 1-bit domain by taking the acceleration of the slope

of the analog signal (the 2nd derivative of the signal). More specifically a ramp up of the

analog signal would result in a series of ones (the number of ones is proportional to the

speed at which the signal is changing), and a ramp down would result in a series of zeros,

leaving us with the trivial zero voltage input analog signal represented by a perfect

oscillation of one-zero. This scheme solves the problem of PCM, which consists of

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 5

basically loss of information due to sampling and quantizing of the signal. Is there a price

to pay for using this new scheme? The answer is Yes and it will be explained why shortly.

 An example of DSD sampling is shown in Figure1.1 below.

Figure 1.1 DSD sampling1

The goal of this project is to handle user-introduced discontinuities in a single bit stream

audio signal without any audible distortion, specifically Sony’s DSD audio signal. User-

introduced discontinuities are caused by user-desired functionalities such as pausing and

un-pausing music. Traditionally discontinuities have been easily handled in the PCM

domain by adjusting signal gain levels appropriately (i.e. fading the musical signal in and

out at discontinuity points). Gain level adjustments require arithmetic operations to be

performed, and arithmetic operations intrinsically require a multi-bit framework. This

poses no problems in the PCM domain since PCM itself is a multi-bit signal, but the

question is raised when working in a 1-bit domain. How can you represent the aspect of

gain or volume with merely one bit?

The underlying solution in this project is to perform the required arithmetic operations

using multi-bit processes and then re-convert a multi-bit signal back into its original

single bit DSD form while striving for the lowest levels of original DSD signal distortion.

The final aim of this project is to produce a working product that is physically capable of

performing the pause and un-pause functionality with a DSD audio signal. This product

due to its required real-time nature will be based primarily on hardware aspects.

1 http://www.superaudio-cd.com

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 6

1.3 Overview of Project work

The final goal of our project was not met because the hardware platform that we intended

to use was not available on time. However the group managed to come up with a fully

working software model on the Altera hardware platform.

2. BACKGROUNG AND MOTIVATION

2.1 General

The main problem in audio signal processing is distortion whether it is due to user-

imposed discontinuities or due to the quantization of the signal. Using the 1-bit domain

processing has solved the latter problem. The former however remains the main obstacle

to matching the input and output signals with minimal noise levels.

More specifically in our project, an implementation of the pause/un-pause functionality is

required. In more technical words, when a user-induced pause is applied, the input is

faded out, and then faded in only when the user un-pauses the input signal, which

theoretically gets rid of that audible click. However, fading in/out the signal, or in other

terms cross-mixing it with a mute signal introduces more noise into the circuit. To

accomplish a smooth switching between the multi-bit altered signal and the 1-bit original

DSD, an accumulator acting as a memory element restoring the changes in the signal

followed by a digital-to-digital Sigma Delta Modulator were used. The latter firstly

helped to convert the multi-bit digital signal into single bit, and secondly to filter out the

noise beyond the audible frequencies (refer to section 3 of this document for detailed

operation).

To better understand the interaction between the different blocks of our circuit (refer to

section 3 of this document), it was seen fit by the group members as well as the faculty

advisor to start with a simulation using Matlab. Different components were implemented

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 7

and tested individually, using the graphical modules as well as custom made functions

written in C-code, before integrating the circuit in its entirety.

2.2 Interface and/or Performance Specifications

The final product will be a fully programmed Xilinx FPGA development board. The

board, on the front-end side, will be connected to a Personal Computer (PC) via an

onboard Ethernet interface and a USB port (other peripheral connections required for the

actual programming of the FPGA chip will also be present). At the back-end side, the

board will be connected to speakers that have analog volume control capabilities. Please

see Figure 2.1 for an Operational System Diagram.

Figure2.1 Operational System Diagram

The board will take in a DSD music signal from the PC in real-time. Up until a pause is

requested by the user, the music signal will simply be passed through the device via

Route A without any significant alternations/processing- with the exception of it lastly

being converted to an analog signal for the speakers (Please see Figure 3.1 for indications

of signal path lines a and m). This outputted analog signal would be amplified by the

external speakers and played at audible volumes so that distortion free music can be

heard while users pause and un-pause. When the user wishes to pause the music, the

output line to the speakers will be switched to disconnect the speakers from signal path

Route A and connect them to a second route of the incoming DSD signal (Route M).

PC FPGA Xilinx
Board

Ethernet
Connection

USB
Connection

Analog Connection to
Speakers

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 8

Then the required processing will be performed by the components in Route B. Through

this processing for the pause and appropriate switching mechanisms the demonstrational

playback music will be outputted as a non-clicking analog signal for a smooth fade out of

the music. A certain time later when the user wishes to un-pause the music- again the

components in signal path Rout B of the device will accomplish a smooth fade in of

music. Then finally a switch from Route M to Route A will be made to return to normal

music playback mode. The primary input interface between the PC, which generates the

DSD music signal, and our device is the Ethernet connection.

3. DESIGN AND PRODUCTION

3.1 Design Requirements

The following system block diagram illustrates the key components of our audio

processing system:

Figure 3.1.

Early operational diagram2

The hardware is internally divided into the following operational components:

2 http://www.airjohn.com/dsd/dsd.html

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 9

Mixer, Accumulator, Σ-∆ modulator, Delay Line, Pattern Match Detector, and Switching

Control Logic Unit. In the first term initial project development consisted of designing

each of these components in Matlab’s Simulink according to their individual

functionality requirements as listed below.

- The Mixer is required to fade in/out the original DSD signal when desired and

mix in an internally generated mute signal (a perfect oscillation between –1 and 1)

when silence is required. This is done by multiplying the input signal by a

reduction factor K, while simultaneously increasing gain on the mute signal by

another factor, both signals are now outputted as multiple-bit signals. The

modified DSD signal is then compared with the original signal by performing

add/subtract operations and this information is passed on to the Accumulator as

input.

- The Accumulator takes the compared signal mentioned above, which has become

a multiple-bit signal as well and stores it, or more specifically stores the opposite

of what was done to the original DSD signal in terms of gain controls.

- The Σ-∆ modulator is used to reconvert a parallel multiple-bit signal back into a

single-bit serial DSD signal. Here the Σ-∆ modulator will take in the modified

multiple-bit signal after subtracting all kinds of noise (via the output of the

Accumulator), and reconvert it to a DSD signal. There are different orders to the

Σ-∆ modulator. The higher the order is, the better the resolution for the multiple-

to-one bit conversion is. For our implementation a 4th order Σ-∆ modulator was

utilized.

- The Delay Line has as its input the original DSD input, and as its output the

delayed version of that original input. This delay will be relative to the “time”

needed for the signal to be faded in/out by the Mixer, plus the time needed for the

Accumulator to re-inject the correction values after the Mixer has finished fading

in and out, and plus the time that it then takes for the Σ-∆ modulator to do the

multi-bit to single-bit conversion.

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 10

- The Pattern Match Detector is a two-input block with a flag to the Switching

Control Logic Unit as output. It constantly checks if the original and modified

DSD signals are matching in real time, and sets a ‘Match Flag’ accordingly.

- The Switching Control Logic Unit’s primary role is to determine the most optimal

times to make a switch from the audio out line being connected to the original

DSD signal line to it being connected to the output of the Σ-∆ modulator during

the pause/un-pause cycle and then back again. Its subsidiary role also includes the

activation and deactivation of the Mixer block, through the assertion and desertion

of an internal pause signal. The internal pause signal (controlled by the Switching

CLU itself) has to be different from the master pause signal (controlled by

external pause/un-pause requests by users themselves) since fading in and out by

the Mixer can not be started the instant a user request is received. Whenever an

intentional discontinuity is performed (pause/mute/skip), the Switching Controller

first waits until it has determined via the Pattern Match Detector’s output that a

distortion free switch can be made to our system’s processing line, makes that

switch, and then only at this point will it assert the internal pause signal which

activates the Mixer component. In a similar backwards fashion it accomplishes

the switch back to the original DSD line when the user’s un-pause request is

received. Please note that only the Mixer component requires input from the

Switching Controller, all other logic blocks continually run in real-time upon

system power up independent of any control from the Switching Controller.

3.2 Division of Labor

The operational system was divided into two main parts. The first part is the Σ-∆

modulator, which will be handled by one group member, since it constitutes one third of

the entirety of the design. The second main part consists of the remainder of the

components described in 3.1, which can be subdivided into two smaller parts between the

two other group members. One logical grouping of work for the 2nd group member

consists of the Mixer & Accumulator, while the second logical grouping of work for the

3rd member consists of the Switching Controller and the Pattern Match Detector. These

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 11

groupings were chosen such that an adequate understanding of one of the components

within a grouping will eventually help in implementing the other components in the

grouping.

3.3 Design Methods

In Matlab’s Simulink a combination of available signal blocks in Simulink’s library and

custom built blocks using C in Simulink’s user defined S-Blocks were used to compile

the initial system model. Please refer to Appendix A for a schematic diagram of the

Matlab model, and the C code (which are listed in the following pages of the same

Appendix section) that makes up the custom blocks. Please note that not all of the

components that were listed in Section 3.1 were modeled in Matlab. Specifically the

Pattern Match detector and the Switching Control Logic Unit were purposely chosen to

be excluded in the Matlab modeling phase since these components were strictly more

real-time based and could be more easily implemented in the FPGA design environment.

Referring to the Matlab schematic it can be seen that the Mixer component is

compromised of the following sub-blocks: K_DSD, K_Mute, Mute Signal Generator,

Counter, Product of DSD & K_DSD, Product of MUTE & K_Mute. The K_DSD and

K_MUTE sub-blocks were modelled using C. They both manipulate a K factor variable

according to the input Pause Control Signal sent by the CLU. The K_DSD block upon

the assertion of the pause signal will take the initial value of 1 for the K factor gradually

down to 0. As can be seen in the C code for the K_DSD, K factor variable reduction is

done in minute increments of 0.000709. The time period chosen for each reduction

decrement is 10 DSD bits or 3.5 microseconds. This 3.5 microsecond reduction interval

combined with the specific reduction decrement of 0.000709 results in the K factor being

brought down to 0 from 1 in roughly 5 milliseconds. And 5 milliseconds was the desired

design requirement for the periods of fading out and fading in. Similarly the K_MUTE

block manipulates the K mute factor variable in exactly the opposite manner, where the

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 12

initial value of 0 is brought up to 1 in increments of 0.000709. Timing for these two K

factor manipulation blocks is kept externally through the use of a counter block. This

counter block counts up to 10 DSD bits and then rolls over back down to 0 again. The

value of 10 generated by the counter is used by the two K factor blocks to execute the

next decrement/increment. The MUTE Signal Generator block itself serves as the clock

for the Counter block. This is feasible since the MUTE Signal itself is a perfect

oscillation between 1 and –1, and is set to have a frequency exactly equal to the period of

two DSD bits. Therefore this serves as a convenient method for keeping the entire

system in sync with the actual DSD bit stream. Finally the two K factor variables are

multiplied with the two DSD and MUTE signals that they are required to manipulate via

the two ‘Product of’ blocks respectively. Once the single-bit DSD and MUTE signals

pass through these two blocks respectively, they will have now been converted to multi-

bit signals, which have gain information contained within them.

The Accumulator was designed in a single complete custom block using C to accomplish

its full functionality. The accumulator internally consists of a level variable and DelSig

Input variable. The level variable is used to accumulate the offset differences to the DSD

signal in a cyclic manner (i.e. rolling the magnitude over from 1 to –1 or rolling under

from –1 to 1, so that at any give time the absolute magnitude of error is kept within the

required range of –1 to 1). The DelSigInput variable is used to actually apply the error

correction value of plus or minus 0.177154195e-3 as output. This value is derived from

the requirement that even if the level variable comes to rest at a maximum magnitude

error of –1 or 1, this error should be restored to 0 within a maximum operation time of 2

milliseconds. If the level variable rests at values under magnitudes of –1 and 1, the

accumulator will thus complete the error correction process faster than the 2 millisecond

maximum requirement.

The Σ-∆ modulator was designed entirely using basic operational blocks available in

Simulink’s library, with the exception of the Quantizer sub-block which had required

custom C code. It was designed to meet the requirement of a 4th order modulator, as can

be seen in the Matlab Schematic.

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 13

Once the Matlab model of the system had been completed, and the functionality of each

block tested individually and together as a complete system, implementation work of the

system on an FPGA platform was commenced in the 2nd term. Altera’s development

environment was used to develop schematic design entry via graphic blocks, which

contained the custom logic functionality coded in VHDL. It was not too difficult to

convert the previously completed C code from the Matlab environment to VHDL code in

Altera’s environment. However, a few minor details required special attention. For

example initialization of variables could not be done simply through code as was the case

with C in Matlab. In VHDL since these variables represented actual physical signals they

had to be externally initialized using separate initialization pulse blocks which would be

active during power-up of the system and then remain stable and inactive while the

system was running.

The complete graphic and VHDL design files are provided in Appendix B, please refer to

this index for the specific implementation details of each logic block.

4. TESTING, EVALUATION, AND RESULTS

4.1 Testing using Matlab

As mentioned in our design approach of this project, Matlab software was used to

simulate the functionality of our operational system. Specifically, illustrative models of

the different components of the circuit as well as real-time models were implemented so

as to give a better understanding of their behavior. This provided us with more insight as

to what type of waveform patterns to expect at the output, and helped us in implementing

our final architectural design.

In our Matlab design, there were three major components that needed to be tested in order

for the group to move on to the Altera software implementation: the Mixer, the

Accumulator, and the Sigma-Delta Modulator.

The mixer was meant to multiply the DSD music signal by a factor K, thus decreasing its

gain from one to zero, or more technically stated, perform the fading out and fading in of

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 14

the DSD music signal. Since there is no such thing as “silence” in a 1-bit system, a mute

signal was simultaneously multiplied by a factor pulling its gain from zero to one. This

cross-fading of the music signal is triggered by the assertion of the pause signal and is

shown in Fig.1 of Appendix A. On this figure, we can see three different waveforms: that

of the DSD signal, the mute signal, and the pause signal, from top to bottom respectively.

It is clear that when the pause signal is asserted, the mute signal, which was initially at

zero, starts increasing until it reaches one; conversely, the value of the DSD signal, which

was initially at one, starts decreasing until it reaches zero. Furthermore, when the pause

signal is de-asserted, the opposite behavior happens: the DSD goes from zero back to one

whereas the mute signal goes from one back to zero. Clearly, these test waveforms

proved the proper functionality of our Mixer. Moreover, since the representation of gain,

volume, or multiplication is unconceivable in a 1-bit domain, the Mixer converted the 1-

bit DSD music signal to a multi-bit signal.

As for the Sigma-Delta Modulator (SDM), its purpose was to bring back the multi-bit

signal obtained from the mixer to the 1-bit domain, as well as filtering the noise beyond

the audible frequencies. Getting a replica of the 1-bit input signal would denote not only

the proper behavior of the SDM but the proper functioning of the entire circuit since the

latter component is connected to the output of the Accumulator. The model used for this

component was illustrative, therefore not functioning in real-time, because this required

creating a random DSD signal and over-sampling it by a factor of 64 (process that could

not be done in Matlab), then inputting it into the SDM. Thus, testing of the filtering of the

noise could not be done. However, the output of the SDM was tested with our DSD input

being the mute signal because of its trivial nature. The mute input signal and the resulting

output waveform of the SDM are shown in Fig.2 of Appendix A. The mute signal is

given by the top waveform, whereas the bottom one shows the corresponding SDM

output. We can see that the output of the SDM is an exact replica of the 1-bit DSD input

with the exception of the width of the pulse. This broadened pulse accounts for the time

delay introduced by the 4 orders of the SDM. Therefore, proper functioning of the SDM

was proved.

The Accumulator, however, could not be tested using Matlab. The main purpose of the

Accumulator was to store the changes experienced by the DSD signal and account for the

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 15

errors introduced by the mixing operations, and thus this process could not be

demonstrated using Matlab. Therefore, thorough testing of the Accumulator was done in

Altera using waveforms simulations. This is discussed in the next subsection.

4.2 Testing of the Accumulator in Altera

The accumulator does not provide any input to the circuit unless the pause is asserted and

then de-asserted; that is, when the pause is asserted the accumulator starts storing the

changes experienced by the signal, and only when the pause signal is de-asserted that the

accumulator starts to inject the opposite of these changes into the SDM. Part of our

simulation results, which were done using Altera, consisted of a simulation of the

correction of the accumulator, which is shown in Fig.4 of Appendix B. If we pay

attention to the “kdsd” and “kmute” signals we notice that the former reaches a value of

10000 (representing a ‘1’) and the latter reaches a value of zero which denotes that pause

signal was de-asserted and the gains of the DSD signal and the mute signal are back to

one and zero respectively. In the meantime, the value of “accMAG” was still increasing,

hence storing changes into the accumulator, but one clock cycle after the de-assertion of

the pause signal the accumulator starts decreasing until it reached a value of zero. These

constant decrements of the accumulator level correspond to the “injection” of the

opposite changes into the SDM. And therefore, the Accumulator is tested and

demonstrated proper behavior.

During the development and design of the project, MATLAB will be used to simulate the

functionality of our operational system. This will provide us with more insight into what

type of signals/waveforms to expect as output, and will aid us in implementing our final

hardware design.

In our final testing phase, a PC (capable of sending DSD signals) will be connected to the

FPGA board, which will in turn be connected to speakers (with analog signal

amplification control). Firstly, our FPGA circuitry will be left out of the loop and a pause

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 16

and un-pause will be performed from the PC- for which very obvious distortion noises

should be heard. The same experiment will then be performed again with our FPGA

circuitry active between the PC and speakers. This time a listener should hear a smooth

fade out and fade in of the music signal without any distortion noises.

Time permitting, other functionalities of our operational system could be exploited such

as muting or skipping a track without any distortion noise. Taking it a step further, we

could implement a more interesting functionality: mixing two tracks, which basically is

the muting functionality done with a “non mute signal”.

4.3 Evaluation in Altera

Without a FPGA board, the only other alternative solution to provide a working model

was to have a software implementation of the circuit, as opposed to a hardware

implementation. For this purpose, Altera software was used, and since it is a completely

different environment, some difficulties arose as to how to translate our now-working

Matlab model to an Altera model. For instance, a number representation system had to be

chosen. Firstly, the IEEE Floating point number representation was considered but

discarded because of the computational complexities thereby introduced. Consequently, a

signed magnitude number representation was chosen where the numbers were scaled up

by a factor of 10,000 in order to avoid the ambiguities introduced by decimal numbers,

and were represented by 15 bits. This significantly simplified the functionality of the

mixer as well as the accumulator. However, in the SDM block, the remainder of the

divisions had to be rounded up or down according to its most significant bit. A “zero”

means that the magnitude of the decimal is less than 0.5 and remainder would be rounded

up, and the opposite is true for a one. If we were to round up, then a one would be added

to the result of the division. Please refer to Appendix B for the SDM schematic. Only the

top hierarchy was shown for neatness and clarity of the report.

Another problem that was faced in Altera was the speed of operation of the software

itself. Specifically, the components in Matlab were modeled in real-time; however, in

Altera, the cross-fading of the DSD input signal and the mute signal, for example, would

require approximately 15,000 clock cycles to complete, which is equivalent to 45 minutes

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 17

of simulation time in Altera, and only after the cross-fading is finished that the

accumulator starts injecting back the errors. This is the main reason why a Xilinx FPGA

board was needed since it operated at a much faster speed.

The Altera model was divided into two main components: the SDM and the rest of the

circuit. The SDM was composed of 4 orders, each order having the same logic blocks,

namely adders, subtractors, dividers, unit delays, and a quantizer at the end. Therefore, it

was more practical to implement this component using the Graphic Design Files (*.gdf)

provided by the Altera environment. The rest of the circuit, on the other hand, required

more specific and block-oriented computations, and hence was designed in VHDL code.

The use of VHDL, however, resulted in some difficulties of its own. More specifically,

having chosen the signed magnitude number representation, computations as simple as an

addition or a subtraction could not be performed, since the only way to recognize a

positive or a negative number was to check the Most Significant Bit (MSB) of the

number. A solution to this problem was to represent all the variables in the circuit by

their MSB as well as their magnitude, which was given by the 14 remaining bits, and

treat them separately.

A schematic of the entire Altera model is given in Fig.1 of Appendix B. This figure

shows all the components that were done in Matlab as well as new components, such as

the Pattern Match Detector, the Control Logic Unit (CLU), and the Delay Line.

The purpose of the delay line is to account for the delay introduced by the circuit under a

pause assertion. The delay introduced by the SDM was found to be equivalent to 6 clock

cycles, and the delay of the combination of the Mixer and Accumulator was found to be

equivalent to 2 clock cycles. Therefore, an 8-bit shift register was designed for the delay

line, each bit accounting for one clock cycle.

As for the pattern match detector, a match of 10 bits between the processed signal and the

original signal was sufficient for proper functionality.

The CLU commands the switching between the original signal and the processed signal

only after having a consecutive 10-bit match between the two signals. Moreover, this

logic unit has as one of its inputs, a Master-pause, which represents the physical pausing

and un-pausing of the music by the user. A point worth mentioning is how the Master-

pause affects our electronic circuitry. For reference, fig.2 of Appendix B shows the

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 18

activation of the internal pause signal resulting from the activation of the Master-pause.

The variable “pcount” from the figure denotes the count inside the pattern match detector.

From this figure, we can see that as the Master-pause is asserted at 470ms, pcount start

increasing from zero, and when pcount reaches the value of 10, that means that 10

consecutive bits are matching and the CLU, in turn, asserts the internal pause signal. An

analog situation to this one is the pause deactivation, which is shown in fig.3 of Appendix

B. When the Master-pause signal is de-asserted, this results in the de-assertion of the

internal pause signal only one clock cycle later. In this case, the CLU does not have to

wait for a 10-bit match, because the switching back to the original circuit occurs only

when the output of the SDM is matched to the original signal, and therefore does not

depend on the de-assertion of the internal pause signal.

Waveform simulation results done in Altera are discussed in the next subsection. These

simulation results represent component functionalities, which are put to test, denoting

proper functionality of the model.

4.4 Software Simulation Results

Initially, in the presence of a Xilinx FPGA board, our demonstration of a working model

would have consisted of inputting a DSD signal from a PC to the FPGA which would

have been in turn connected to amplified speakers, and the listener should have heard a

smooth fade out and fade in of the music signal without any distortion noises.

However, in our case, proper functioning of our model consists of proving that every

component works as expected and thus obtaining a match between the output of the

SDM, which is also the output of the entire circuitry, and the original DSD input signal.

The first simulation results deals with the behavior of the accumulator. Referring to Fig.4

of Appendix B, we see that both the Master-pause and internal pause signal are de-

asserted, meaning that the DSD input gain is increasing to 1 and the mute signal is

decreasing to zero, which in turn orders the accumulator to inject back the errors

experienced by the signal into the SDM. These injections are repeated every clock cycle

until the accumulator level goes back to zero. As for the value of the injections, inserting

too many injections in a short period of time would result in a distorted signal, and

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 19

similarly inserting a few injections in a long period of time would result in an altered

signal; so, the optimal period of time found was 2 msec which corresponds to a value of 2

in our number representation, and which is denoted by the variable “delMAG” on the

same figure.

Moreover, as discussed in the previous subsection and shown in Fig.2 of Appendix B, the

internal pause is asserted after establishing a match between the original signal and the

processed signal, in which case the gains of the DSD input signal and the mute signal

start to decrease to zero and increase to one respectively. Furthermore, altering the gains

of these two signals orders the accumulator to start storing these changes as shown in

Fig.2.

On a final note, having demonstrated the proper interactions between all the components

in the circuitry, a match between the final DSD signal and the original DSD signal should

be proved. Referring to Fig.5 of Appendix B, we see that the accumulator level is brought

down to zero and the error injections to the SDM are stopped as expected. In the

meantime, the pattern match detector is checking for a 10 bit match between the final

DSD signal, which corresponds to the output of the SDM, and the original DSD signal.

Thus, when a value of pcount equal to 10 is reached, a steady match is obtained, and the

flag in the CLU is asserted allowing proper switching between the processed signal and

the original signal. Therefore, proper working of our model is demonstrated.

It should be stated, however, that we were limited as to the randomness of the input DSD

signal since, in Altera, the DSD waveform could only be done manually. Thus, future

work would consist of downloading our Altera model onto a FPGA board, namely Xilinx

(because of its operating speed), as well as connecting the board to a PC generating a

random DSD signal on the one end, and speakers (with analog signal amplification

control) on the other end, and hence demonstrate a distortion-free pausing and un-pausing

of the DSD music signal.

5. CONCLUSION

Currently, there are not many devices that can handle discontinuities in the DSD domain.

Therefore this project provides an FPGA downloadable implementation for a working

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 20

device that could handle a pause – unpause functionality when listening to a DSD music

signal. In order to accomplish this, it was required as a first step to convert the single-bit

DSD signal into a multi-bit signal which could hold gain level (volume) information, and

then using a Σ-∆ modulator reconvert the multi-bit signal back to its original single-bit

DSD domain in a distortion free manner. The circuitry required to accomplish this task

consisted of devices such as a mixer, an accumulator, a pattern match detector, as well as

a control logic unit. Consequently, a Matlab model was required in order to create

algorithms for these devices and provide a simulation of the entire system. This Matlab

simulation was followed by a hardware implementation in Altera’s development

environment using primarily VHDL code and graphical schematic blocks. The

functionality of the implementation was verified to be correct and functioning through

waveform results. As future work, the design files need to be downloaded into an actual

FPGA chip to build a physical device, which would run our designed system.

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 21

6. REFERENCES

1. DSD – Thesis, European Media Master of Arts, Arjan Van Asselt, Summer 2000

http://www.airjohn.com/dsd/dsd.html

2. Care and Feeding of the One Bit Digital to Analog Converter:

 http://www.ee.washington.edu/conselec/CE/kuhn/onebit/primer.htm

3. The Xilinx website:

http://www.xilinx.com

4. SONY CXD2753R reference manual

5. SACD Sony webpage:

http://www.superaudio-cd.com

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 22

APPENDIX A – MATLAB FILES

Matlab System Schematic

Fig.1. Matlab Schematic

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 23

Matlab C code for Custom Blocks

K_Mute Code:

 if (*pause == 0) {
 if (*kmute < 0.000709) *kmute = 0;
 else if (*count == 0)*kmute = *kmute - 0.000709;
 }/* ends if */

 if (*pause == 1) {
 if (*kmute > (1-0.000709)) *kmute = 1;
 else if (*count == 0)*kmute = *kmute + 0.000709;
 }/* ends if */

K_DSD Code:

 *swiOn = *swiOn + *pause;

 if (*swiOn == 0) *kdsd = 1;

 if (*swiOn >= 1) {
 if (*pause == 0) {
 if (*kdsd > (1-0.000709)) *kdsd = 1;
 else if (*count == 0)*kdsd = *kdsd + 0.000709;
 }/* ends rising if */
 if (*pause == 1) {
 if (*kdsd < 0.000709) *kdsd = 0;
 else if (*count == 0)*kdsd = *kdsd - 0.000709;
 }/* ends falling if */
 *swiOn = 1;
 }/* ends swiOn=1 if */

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 24

Accumulator Code:

 *DelSigInput = 0;

 *AccLevel = *AccLevel + *OffsetVal;
 if (*AccLevel < -1) *AccLevel = 1 + (*AccLevel + 1);
 if (*AccLevel > 1) *AccLevel = -1 + (*AccLevel - 1);

 if ((*OffsetVal == 0) && (*AccLevel != 0)){
 if (*AccLevel > 0){
 if (*AccLevel < 0.177154195e-3) *AccLevel = 0;
 else {
 *AccLevel = *AccLevel - 0.177154195e-3;
 *DelSigInput = 0.177154195e-3;
 }/* ends ELSE */
 }/* ends IF for AccLevel decrementation */
 if (*AccLevel < 0){
 if (*AccLevel > (0 - 0.177154195e-3))*AccLevel = 0;
 else {
 *AccLevel = *AccLevel + 0.177154195e-3;
 *DelSigInput = -0.177154195e-3;
 }/* ends ELSE */
 }/* ends IF for AccLevel incrementation */
 }/* ends If for AccLevel Reduction */

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 25

Matlab Waveforms:

Fig.2. Cross-fading of DSD input signal and mute signal with respect to pause signal

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 26

Fig.3. Mute signal as input and corresponding SDM output

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 27

APPENDIX B

Altera System Schematic

Fig.1. Altera Schematic

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 28

Altera SDM Schematic

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 29

Altera VHDL files by Component

K DSD Block:
LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY K_DSD IS
 PORT (Pause, Clock : IN STD_LOGIC;
 Count : IN INTEGER RANGE 0 TO 8;
 Pulse : IN INTEGER RANGE 0 TO 2;
 kdsd : BUFFER INTEGER RANGE 0 TO 10000);
END K_DSD;

ARCHITECTURE Behavior OF K_DSD IS
BEGIN
 PROCESS (Pause, Count, Pulse, Clock)
 BEGIN
 IF Pulse=1 THEN kdsd<=10000;

 ELSIF rising_edge(Clock) THEN

 IF (Pause='0' AND Pulse=2) THEN
 IF kdsd>9993 THEN kdsd<=10000;
 ELSIF Count=0 THEN kdsd<=(kdsd+7);
 END IF;

 ELSIF (Pause='1' AND Pulse=2) THEN
 IF kdsd<7 THEN kdsd<=0;
 ELSIF Count=0 THEN kdsd<=(kdsd-7);
 END IF;
 END IF;
 END IF;
 END PROCESS;
END Behavior;

K MUTE Block:

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY K_Mute IS
 PORT (Pause, Clock : IN STD_LOGIC;
 Count : IN INTEGER RANGE 0 TO 8;
 Pulse : IN INTEGER RANGE 0 TO 2;

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 30

 kmute : BUFFER INTEGER RANGE 0 TO 10000);
END K_Mute;

ARCHITECTURE Behavior OF K_Mute IS
BEGIN
 PROCESS (Pause, Count, Pulse, Clock)
 BEGIN
 IF Pulse=1 THEN kmute<=0;

 ELSIF rising_edge(Clock) THEN

 IF (Pause='0' AND Pulse=2) THEN
 IF kmute<7 THEN kmute<=0;
 ELSIF Count=0 THEN kmute<=(kmute-7);
 END IF;

 ELSIF (Pause='1' AND Pulse=2) THEN
 IF kmute>9993 THEN kmute<=10000;
 ELSIF Count=0 THEN kmute<=(kmute+7);
 END IF;
 END IF;
 END IF;
 END PROCESS;
END Behavior;

CNTPUL Block (Initialization Pulse):

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY cntPul IS
 PORT (Clock : IN STD_LOGIC;
 Q : BUFFER INTEGER RANGE 0 TO 2);
END cntPul;

ARCHITECTURE Behavior OF cntPul IS
BEGIN
 PROCESS (Clock)
 BEGIN
 IF rising_edge(Clock) THEN
 IF Q=2 THEN Q<=2;
 ELSE Q<=(Q+1);
 END IF;
 END IF;
 END PROCESS;
END Behavior;

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 31

Counter Block:

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY counter IS
 PORT (Clock, Reset : IN STD_LOGIC;
 Set : BUFFER STD_LOGIC;
 Q : BUFFER INTEGER RANGE 0 TO 8);
END counter;

ARCHITECTURE Behavior OF counter IS
BEGIN
 PROCESS (Reset, Clock)
 BEGIN
 IF Reset='0' THEN Set<='1';
 END IF;
 IF (Reset='1' AND Set='1') THEN Q<=0; Set<='0';
 ELSIF rising_edge(Clock) THEN
 IF Q=8 THEN Q<=0;
 ELSE Q<=(Q+2);
 END IF;
 END IF;
 END PROCESS;
END Behavior;

Subtractor Block:

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY subtractor IS
 PORT (Clock : IN STD_LOGIC;
 KMag : IN INTEGER RANGE 0 TO 10000;
 offSetMag : BUFFER INTEGER RANGE 0 TO 10000);
END subtractor;

ARCHITECTURE Behavior OF subtractor IS

BEGIN
 PROCESS (Clock)
 BEGIN

 IF rising_edge(Clock) THEN

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 32

 offSetMag<=(10000 - KMag);

 END IF;
 END PROCESS;
END Behavior;

Accumulator Block:
LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY ACCUMULATOR IS
 PORT (Clock : IN STD_LOGIC;
 Pulse : IN INTEGER RANGE 0 TO 2;
 offMSB : STD_LOGIC;
 offMAG : IN INTEGER RANGE 0 TO 10000;
 accLevelMSB : BUFFER STD_LOGIC;
 accLevelMAG: BUFFER INTEGER RANGE 0 TO 20000;
 delMSB : OUT STD_LOGIC;
 delMAG : BUFFER INTEGER RANGE 0 to 2);
END ACCUMULATOR;

ARCHITECTURE Behavior OF ACCUMULATOR IS
BEGIN
 PROCESS (Clock)
 BEGIN

 IF rising_edge(Clock) THEN

 IF (Pulse=1) THEN
 accLevelMSB<='0';
 accLevelMAG<=0;

 ELSIF (Pulse=2) THEN

 delMSB<='0';
 delMAG<=0;

 IF (accLevelMSB=offMSB) THEN
 accLevelMAG<= accLevelMAG + offMAG;
 ELSIF (accLevelMAG>=offMAG) THEN
 accLevelMAG<= accLevelMAG - offMAG;
 ELSIF (offMAG>accLevelMAG) THEN
 accLevelMAG<= offMAG - accLevelMAG;
 accLevelMSB<=offMSB;
 END IF;

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 33

 IF (accLevelMAG>10000) THEN
 accLevelMAG<= (20000 - accLevelMAG);
 IF (accLevelMSB='1') THEN accLevelMSB<='0';
 ELSE accLevelMSB<='1';
 END IF;
 END IF;

 IF (offMAG=0 AND accLevelMAG/=0) THEN
 delMAG<=2;
 IF (accLevelMAG<2) THEN accLevelMAG<=0;
 ELSE accLevelMAG<=accLevelMAG - 2;
 END IF;

 IF (accLevelMSB='0') THEN delMSB<='1';
 END IF;
 END IF;

 END IF;
 END IF;
 END PROCESS;
END Behavior;

Adder Block:

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY adder IS
 PORT (Clock : IN STD_LOGIC;
 dsdMSB : IN STD_LOGIC;
 muteMSB : IN STD_LOGIC;
 dsdMag : IN INTEGER RANGE 0 TO 10000;
 muteMag : IN INTEGER RANGE 0 TO 10000;
 totalMag : BUFFER INTEGER RANGE 0 TO 10000;
 outMSB : OUT STD_LOGIC);
END adder;

ARCHITECTURE Behavior OF adder IS

BEGIN

 PROCESS (Clock)
 BEGIN

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 34

 IF rising_edge(Clock) THEN
 IF (dsdMSB=muteMSB) THEN
 totalMag<=(dsdMag + muteMag);
 outMSB<=dsdMSB;

 ELSIF (dsdMag >= muteMag) THEN
 totalMag<= (dsdMag - muteMag);
 outMSB<=dsdMSB;

 ELSIF (muteMag >= dsdMag) THEN
 totalMag<= (muteMag - dsdMag);
 outMSB<=muteMSB;
 END IF;

 END IF;
 END PROCESS;

END Behavior;

Adder2 Block:

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY adder2 IS
 PORT (Clock : IN STD_LOGIC;
 dsdMSB : IN STD_LOGIC;
 muteMSB : IN STD_LOGIC;
 dsdMag : IN INTEGER RANGE 0 TO 10000;
 muteMag : IN INTEGER RANGE 0 TO 2;
 totalMag : BUFFER INTEGER RANGE 0 TO 10000;
 outMSB : OUT STD_LOGIC);
END adder2;

ARCHITECTURE Behavior OF adder2 IS

BEGIN

 PROCESS (Clock)
 BEGIN

 IF rising_edge(Clock) THEN
 IF (dsdMSB=muteMSB) THEN
 totalMag<=(dsdMag + muteMag);
 outMSB<=dsdMSB;

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 35

 ELSIF (dsdMag >= muteMag) THEN
 totalMag<= (dsdMag - muteMag);
 outMSB<=dsdMSB;

 ELSIF (muteMag >= dsdMag) THEN
 totalMag<= (muteMag - dsdMag);
 outMSB<=muteMSB;
 END IF;

 END IF;
 END PROCESS;

END Behavior;

Shifter Block (Delay Line):

library ieee;
use ieee.std_logic_1164.all;
entity shift is
 port(C, SI : in std_logic;
 SO : out std_logic);
end shift;
architecture archi of shift is
 signal tmp: std_logic_vector(7 downto 0);
 begin
 process (C)
 begin
 if (C'event and C='1') then
 for i in 0 to 6 loop
 tmp(i+1) <= tmp(i);
 end loop;
 tmp(0) <= SI;
 end if;
 end process;
 SO <= tmp(7);
end archi;

Pattern Match Detector Block:

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY patern IS

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 36

 PORT (Clock, DSD, SDM : IN STD_LOGIC;
 flag : OUT STD_LOGIC;
 count : BUFFER INTEGER RANGE 0 TO 10);
END patern;

ARCHITECTURE Behavior OF patern IS

BEGIN

 PROCESS (Clock)
 BEGIN

 IF rising_edge(Clock) THEN

 IF (DSD=SDM) THEN
 IF (count=10) THEN flag<='1';
 ELSE count<=count+1;
 END IF;
 ELSE
 count<=0;
 flag<='0';
 END IF;

 END IF;
 END PROCESS;

END Behavior;

Switching Control Logic Unit Block:

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY clu IS
 PORT (Clock, masterPause, flag, originalDSD, mixedDSD : IN STD_LOGIC;
 pause, finalDSD : OUT STD_LOGIC);
END clu;

ARCHITECTURE Behavior OF clu IS

BEGIN

 PROCESS (Clock)

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 37

 BEGIN

 IF rising_edge(Clock) THEN

 IF (masterPause='0') THEN
 pause<='0';
 IF (flag='1') THEN finalDSD<=originalDSD;
 END IF;
 ELSE
 IF (flag='1') THEN
 finalDSD<=mixedDSD;
 pause<='1';
 END IF;
 END IF;

 END IF;
 END PROCESS;

END Behavior;

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 38

Altera Simulation Results:

Fig.2. Master-pause and pause activation

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 39

Fig.3. Pause deactivation

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 40

Fig.4. Accumulator correction

Discontinuity Handling In Single-Bit Audio Applications

ELEC 490/492/498 Final Report 8/20/2009 41

Fig.5. Steady match

