Discontinuity Handling In Single-Bit Audio Applicains

ELEC 490/492/498/499 Final Report

Discontinuity Handling In
Single-Bit Audio Applications

Submitted by:
Group #25
Moorthy, Theepan
Nasr, Amr
Nasr, Sherif

Faculty Supervisor:

Dr. Sudharsanan

ELEC 490/492/498 Final Report 1 8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

Executive Summary

Currently a new audio CD format is emerging in terket, known as the Super Audio
CD format (SACD), patented by Sony — Philips cogbions. This new audio processing
technology so far has been implemented (i.e. SA@Rgssors) by Sony and Philips
only. However, there exists a demand for other comgs to produce SACD processors,

hence our project to design a specific functiogaditan SACD processor.

The SACD format uses a new technology for recgraind reproducing music digitally
known as Direct Stream Digital (DSD, trademarkedloyy/Philips). DSD technology is
radically different relative to the existing PulSede Modulation (PCM) technology for
recording and reproducing music in that it funcé@mtirely in a one-bit domain. The
problem with designing an SACD processor is thasently no established standard
methods of handling one-bit stream audio signailstexs they do for the PCM domain.

Brand new processing methodologies are requiréamnale even basic features such as
muting, pausing, and skipping music tracks. Oujgatospecifically resolves the problem
of pausing and un-pausing a DSD music signal sniyp@tk. without any audible clicks
even at high volume levels). More technically slatbis project deals with distortion
free handling of a user-imposed discontinuity D@D stream. Our solution to this
problem consisted of developing an actual hardwapéementation that will handle the
pause/un-pause functionality, based upon currerature and research papers that
document theories on manipulating one-bit sigridisre specifically, the hardware is a

FPGA platform based implementation.

Evaluation of the designed hardware was analyzedi¢in simulation waveform tests to
verify functionality. Specifically the original ¥waveform was compared to the final
DSD waveform output from our system to verify, ewdter our pause/un-pause
functionality, that the signal remained distortioge. The waveforms proved that this
was the case, and our design is set to be dowrdaadsn actual FPGA chip as future

work.

ELEC 490/492/498 Final Report 2 8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

TABLE OF CONTENTS

EXECUTIVE SUMMARY ...t e a0l 2
TABLE OF CONTENTS e 3

1. INTRODUCTION. .. .cctit it e e e e e e e
R U] 10 1] PP 4
1.2 Background and Objectives.........ccvveii i iii i ameeen 4
1.3 Overview Of ProjeCt WOrK........ooi i e e e e e e 6
2. BACKGROUND AND MOTIVATION. ...ttt i e e e e 6
2.0 GNEIAL. .. e 6
2.2 Interface and/or Performance Specifications..............cccoovviiiiinann. 7

3. DESIGN AND PRODUCTION APPROACH.........cccoi v e eenn .8
3.1 DeSignN ReqUIrEMENTS.....v it e et e e e e et e e e e e e e eneee O
3.2 DiviSion Of Labor.......c.iuiii i e e 10
3.3 DeSIgN MELNOAS.o e e 11
4. TESTING, EVALUATION AND RESULTS......cciiiiiiiiii e 13
4.1 Testingusing Matlab............coo oo 13
4.2 Testing of the Accumulator in Altera..........c.ooii i iii s i 15
4.3 Evaluation in Altera... ..o i a2 1B
4.4 Software Simulation ReSultS............cocov i 00018
5. CONCLUSION.cit it e e e e e e 00 19
6. REFERENCES. ... e 21
APPENDIX AMatlab Files ... 0. 22
APPENDIX B Altera File........co oo e e, 27

ELEC 490/492/498 Final Report 3 8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

1. INTRODUCTION
1.1Purpose

The objective of this report is to deliver a sumynairthe work and results of the ELEC
490/492/498 project committed to by Group #25. Thort is primarily directed
towards ELEC 498’s course instructors, our Fac8lipervisor Dr. Sudharsanan, as well
as future ELEC 490/492/498 project groups.

1.2Background and Objectives

Today leading audio companies are striving forw technology triggered by the idea of
having an audio CD with DVD audio quality (i.e. pr¢ked settings, surround sound,
etc...). There exist two main camps of companiesiwithe industry each battling to get
to that goal via two opposing routes. One of thems still bases its research on the Pulse
Code Modulation scheme (PCM), which is what we ksilen to today (audio signals are
sampled at 44.1 kHz). Their research and developsieply consists of increasing the
sampling rate (88.2 kHz) and therefore increadiegnumber of bits representing the
analog signal, thus representing the analog sigoa¢ accurately (16, 32, 64, etc...). The
other camp, on the other hand, consisting of SoR#itips, decided to come up with a
revolutionary scheme to betteap out the analog audio signal: the Direct Stream
Digital. Their work and code still remains a traderet today aiming to incite a third
party to compete in order for the new technologlg@éanarketable, which motivated our
group to derive a general solution irrelevant ofB@hilips’ encoding methodologies.
The analog signal is represented in a 1-bit dorbgitaking the acceleration of the slope
of the analog signal (thé®derivative of the signal). More specificallyamp up of the
analog signal would result in a serieonés (the number of ones is proportional to the
speed at which the signal is changing), andnap down would result in a series aéros,
leaving us with the trivial zero voltage input asgkignal represented by a perfect

oscillation ofone-zero. This scheme solves the problem of PCM, which ist&ef

ELEC 490/492/498 Final Report 4 8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

basically loss of information due to sampling andrmfizing of the signal. Is there a price
to pay for using this new scheme? The answ¥essand it will be explained why shortly.
An example of DSD sampling is shown in Figureleloky.
AT
rd g \‘\

LY

r %,

/ \
\ /
NS

[INREEERL L

LEFATATIA LT T LT LN I I

Figure 1.1 DSD samplirig

The goal of this project is to handle user-intrasthdiscontinuities in a single bit stream
audio signal without any audible distortion, speaily Sony’s DSD audio signal. User-
introduced discontinuities are caused by user-dégunctionalities such as pausing and
un-pausing music. Traditionally discontinuities bdeen easily handled in the PCM
domain by adjusting signal gain levels appropnafeé. fading the musical signal in and
out at discontinuity points). Gain level adjustriserequire arithmetic operations to be
performed, and arithmetic operations intrinsicadiguire a multi-bit framework. This
poses no problems in the PCM domain since PCM itsal multi-bit signal, but the
guestion is raised when working in a 1-bit dom&alow can you represent the aspect of
gain or volume with merely one bit?

The underlying solution in this project is to penfothe required arithmetic operations
using multi-bit processes and then re-convert dirbitlsignal back into its original
single bit DSD form while striving for the lowes\Jels of original DSD signal distortion.
The final aim of this project is to produce a wakiproduct that is physically capable of
performing the pause and un-pause functionalith @iDSD audio signal. This product

due to its required real-time nature will be bagedharily on hardware aspects.

! http://www.superaudio-cd.com

ELEC 490/492/498 Final Report 5 8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

1.30verview of Project work

The final goal of our project was not met becatigehtardware platform that we intended
to use was not available on time. However the groapaged to come up with a fully

working software model on the Altera hardware jliatf.

2. BACKGROUNG AND MOTIVATION

2.1 General

The main problem in audio signal processing isodigtn whether it is due to user-
imposed discontinuities or due to the quantizatibthe signal. Using the 1-bit domain
processing has solved the latter problem. The fohowever remains the main obstacle
to matching the input and output signals with mialimoise levels.

More specifically in our project, an implementatiointhe pause/un-pause functionality is
required. In more technical words, when a userdedyause is applied, the input is
faded out, and then faded in only when the usgpauses the input signal, which
theoretically gets rid of that audible click. Hoveeyfading in/out the signal, or in other
terms cross-mixing it with a mute signal introducasre noise into the circuit. To
accomplish a smooth switching between the multaliéred signal and the 1-bit original
DSD, an accumulator acting as a memory elemerdriagtthe changes in the signal
followed by a digital-to-digital Sigma Delta Modtba were used. The latter firstly
helped to convert the multi-bit digital signal irgmgle bit, and secondly to filter out the
noise beyond the audible frequencies (refer ta@e& of this document for detailed
operation).

To better understand the interaction between ttierdnt blocks of our circuit (refer to
section 3 of this document), it was seen fit byghaup members as well as the faculty

advisor to start with a simulation using Matlabff&ent components were implemented

ELEC 490/492/498 Final Report 6 8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

and tested individually, using the graphical modws well as custom made functions

written in C-code, before integrating the circuitiis entirety.

2.2Interface and/or Performance Specifications

The final product will be a fully programmed XililGA development board. The
board, on the front-end side, will be connected Rersonal Computer (PC) via an
onboard Ethernet interface and a USB port (othaplperal connections required for the
actual programming of the FPGA chip will also begant). At the back-end side, the
board will be connected to speakers that have gnallume control capabilities. Please
see Figure 2.1 for an Operational System Diagram.

Ethernet Analog Connection to
Connection Speakers
USB
Connection -
PC FPGA Xilinx
Board

Figure2.1 Operational System Diagram

The board will take in a DSD music signal from B in real-time. Up until a pause is
requested by the user, the music signal will sinfy@ypassed through the device via
Route A without any significant alternations/pragiag- with the exception of it lastly
being converted to an analog signal for the spsaliiease see Figure 3.1 for indications
of signal path lines a and m). This outputted agpaignal would be amplified by the
external speakers and played at audible volumdésagalistortion free music can be
heard while users pause and un-pause. When thevisters to pause the music, the
output line to the speakers will be switched t@dimect the speakers from signal path

Route A and connect them to a second route ofnit@ming DSD signal (Route M).

ELEC 490/492/498 Final Report 7 8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

Then the required processing will be performedhgydomponents in Route B. Through
this processing for the pause and appropriate Bimgonechanisms the demonstrational
playback music will be outputted as a non-clickamglog signal for a smooth fade out of
the music. A certain time later when the user @ssto un-pause the music- again the
components in signal path Rout B of the device agtomplish a smooth fade in of
music. Then finally a switch from Route M to Roétavill be made to return to normal
music playback mode. The primary input interfaceveen the PC, which generates the
DSD music signal, and our device is the Ethernaheotion.

3. DESIGN AND PRODUCTION

3.1Design Requirements

The following system block diagram illustrates K&y components of our audio

processing system:

Figure 3.1.
Early operational diagram

The hardware is internally divided into the follogioperational components:

2 http://www.airjohn.com/dsd/dsd.html

ELEC 490/492/498 Final Report 8 8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

Mixer, Accumulator>-A modulator, Delay Line, Pattern Match Detector, &mdtching
Control Logic Unit. In the first term initial pregt development consisted of designing
each of these components in Matlab’s Simulink atiogyto their individual

functionality requirements as listed below.

- The Mixer is required to fade in/out the origingD signal when desired and
mix in an internally generated mute signal (a paréescillation between —1 and 1)
when silence is required. This is done by multipdythe input signal by a
reduction factor K, while simultaneously increasgegn on the mute signal by
another factor, both signals are now outputted @al§ipte-bit signals. The
modified DSD signal is then compared with the avagisignal by performing
add/subtract operations and this information ised®n to the Accumulator as
input.

- The Accumulator takes the compared signal mentiatede, which has become
a multiple-bit signal as well and stores it, or mepecifically stores the opposite
of what was done to the original DSD signal in temoh gain controls.

- TheZ-A modulator is used to reconvert a parallel multiptesignal back into a
single-bit serial DSD signal. Here tBeA modulator will take in the modified
multiple-bit signal after subtracting all kindsmdise (via the output of the
Accumulator), and reconvert it to a DSD signal. fEnare different orders to the
>-A modulator. The higher the order is, the betteréselution for the multiple-
to-one bit conversion is. For our implementatiofi"arders-A modulator was
utilized.

- The Delay Line has as its input the original DSput) and as its output the
delayed version of that original input. This delall be relative to the “time”
needed for the signal to be faded in/out by thedviplus the time needed for the
Accumulator to re-inject the correction values iaftee Mixer has finished fading
in and out, and plus the time that it then takesHe>-A modulator to do the

multi-bit to single-bit conversion.

ELEC 490/492/498 Final Report 9 8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

- The Pattern Match Detector is a two-input blockwétflag to the Switching
Control Logic Unit as output. It constantly chedkihe original and modified
DSD signals are matching in real time, and seMatch Flag' accordingly.

- The Switching Control Logic Unit’'s primary role tg determine the most optimal
times to make a switch from the audio out line baiannected to the original
DSD signal line to it being connected to the outguhe>-A modulator during
the pause/un-pause cycle and then back agairuldtsdsary role also includes the
activation and deactivation of the Mixer block,dhigh the assertion and desertion
of an internal pause signal. The internal paugeasi(controlled by the Switching
CLU itself) has to be different from the master g@agignal (controlled by
external pause/un-pause requests by users themssinee fading in and out by
the Mixer can not be started the instant a usarastgs received. Whenever an
intentional discontinuity is performed (pause/msitgd), the Switching Controller
first waits until it has determined via the Pattbtatch Detector’s output that a
distortion free switch can be made to our systgmgessing line, makes that
switch, and then only at this point will it assére internal pause signal which
activates the Mixer component. In a similar badldsdashion it accomplishes
the switch back to the original DSD line when tlsens un-pause request is
received. Please note that only the Mixer compbregquires input from the
Switching Controller, all other logic blocks contadly run in real-time upon
system power up independent of any control fromSvéching Controller.

3.2Division of Labor

The operational system was divided into two mainspd he first part is thE-A

modulator, which will be handled by one group membmce it constitutes one third of
the entirety of the design. The second main parsists of the remainder of the
components described in 3.1, which can be subdivial® two smaller parts between the
two other group members. One logical grouping ofkufor the 29 group member
consists of the Mixer & Accumulator, while the seddogical grouping of work for the
3 member consists of the Switching Controller arelRlattern Match Detector. These

ELEC 490/492/498 Final Report 10 8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

groupings were chosen such that an adequate uadeirsg of one of the components

within a grouping will eventually help in implemémng the other components in the

grouping.

3.3 Design Methods

In Matlab’s Simulink a combination of available sad blocks in Simulink’s library and
custom built blocks using C in Simulink’s user defil S-Blocks were used to compile
the initial system model. Please refer to Appedior a schematic diagram of the
Matlab model, and the C code (which are listechenfollowing pages of the same
Appendix section) that makes up the custom bloédsase note that not all of the
components that were listed in Section 3.1 wereatgadin Matlab. Specifically the
Pattern Match detector and the Switching Contra@itdJnit were purposely chosen to
be excluded in the Matlab modeling phase sincesthemponents were strictly more

real-time based and could be more easily implendeintéhe FPGA design environment.

Referring to the Matlab schematic it can be seanttie Mixer component is
compromised of the following sub-blocks: K_DSD, Kutd, Mute Signal Generator,
Counter, Product of DSD & K_DSD, Product of MUTEK& Mute. The K_DSD and
K_MUTE sub-blocks were modelled using C. They ho#mipulate a K factor variable
according to the input Pause Control Signal serihbyCLU. The K_DSD block upon
the assertion of the pause signal will take thigailwalue of 1 for the K factor gradually
down to 0. As can be seen in the C code for the$D, K factor variable reduction is
done in minute increments of 0.000709. The tinmeoogechosen for each reduction
decrement is 10 DSD bits or 3.5 microseconds. 3Jlisnicrosecond reduction interval
combined with the specific reduction decrement.000709 results in the K factor being
brought down to 0 from 1 in roughly 5 millisecond&nd 5 milliseconds was the desired
design requirement for the periods of fading owt fding in. Similarly the K_ MUTE

block manipulates the K mute factor variable inatlyethe opposite manner, where the

ELEC 490/492/498 Final Report 11 8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

initial value of 0 is brought up to 1 in incrementD.000709. Timing for these two K
factor manipulation blocks is kept externally thgbuhe use of a counter block. This
counter block counts up to 10 DSD bits and thels mter back down to 0 again. The
value of 10 generated by the counter is used bywtheK factor blocks to execute the
next decrement/increment. The MUTE Signal Genefaltk itself serves as the clock
for the Counter block. This is feasible since Mi@TE Signal itself is a perfect
oscillation between 1 and -1, and is set to hdvecuency exactly equal to the period of
two DSD bits. Therefore this serves as a convémeathod for keeping the entire
system in sync with the actual DSD bit stream.afyrthe two K factor variables are
multiplied with the two DSD and MUTE signals thagy are required to manipulate via
the two ‘Product of' blocks respectively. Once #ivegle-bit DSD and MUTE signals
pass through these two blocks respectively, théyhave now been converted to multi-

bit signals, which have gain information containathin them.

The Accumulator was designed in a single complestorn block using C to accomplish
its full functionality. The accumulator internaltpnsists of a level variable and DelSig
Input variable. The level variable is used to aculate the offset differences to the DSD
signal in a cyclic manner (i.e. rolling the magdieuwover from 1 to —1 or rolling under
from —1 to 1, so that at any give time the absatudgnitude of error is kept within the
required range of —1 to 1). The DelSigInput vdeab used to actually apply the error
correction value of plus or minus 0.177154195e-8wput. This value is derived from
the requirement that even if the level variable esno rest at a maximum magnitude
error of —1 or 1, this error should be restore@ within a maximum operation time of 2
milliseconds. If the level variable rests at valueder magnitudes of —1 and 1, the
accumulator will thus complete the error correcfwacess faster than the 2 millisecond

maximum requirement.

TheZ-A modulator was designed entirely using basic operalk blocks available in
Simulink’s library, with the exception of the Quenetr sub-block which had required
custom C code. It was designed to meet the regeineof a 4 order modulator, as can

be seen in the Matlab Schematic.

ELEC 490/492/498 Final Report 12 8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

Once the Matlab model of the system had been cdethland the functionality of each
block tested individually and together as a congpssistem, implementation work of the
system on an FPGA platform was commenced in theetm. Altera’s development
environment was used to develop schematic desigy @a graphic blocks, which
contained the custom logic functionality coded HDL. It was not too difficult to

convert the previously completed C code from thél&beenvironment to VHDL code in
Altera’s environment. However, a few minor detadgquired special attention. For
example initialization of variables could not bendasimply through code as was the case
with C in Matlab. In VHDL since these variablepmesented actual physical signals they
had to be externally initialized using separatgahration pulse blocks which would be
active during power-up of the system and then raerstaible and inactive while the

system was running.

The complete graphic and VHDL design files are mtedt in Appendix B, please refer to
this index for the specific implementation detatsach logic block.

4. TESTING, EVALUATION, AND RESULTS
4.1 Testing using Matlab

As mentioned in our design approach of this projeietlab software was used to
simulate the functionality of our operational systespecifically, illustrative models of

the different components of the circuit as welfea-time models were implemented so
as to give a better understanding of their behavVibis provided us with more insight as
to what type of waveform patterns to expect atdhgput, and helped us in implementing
our final architectural design.

In our Matlab design, there were three major coreptsithat needed to be tested in order
for the group to move on to the Altera software lenpentation: the Mixer, the
Accumulator, and the Sigma-Delta Modulator.

The mixer was meant to multiply the DSD music sldnea factor K, thus decreasing its

gain from one to zero, or more technically stapedform the fading out and fading in of

ELEC 490/492/498 Final Report 13 8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

the DSD music signal. Since there is no such thmgsilence” in a 1-bit system, a mute
signal was simultaneously multiplied by a factollipg its gain from zero to one. This
cross-fading of the music signal is triggered g/ dlssertion of the pause signal and is
shown in Fig.1 of Appendix A. On this figure, wencsee three different waveforms: that
of the DSD signal, the mute signal, and the paigseak from top to bottom respectively.
It is clear that when the pause signal is asseitiednute signal, which was initially at
zero, starts increasing until it reaches one; caelg, the value of the DSD signal, which
was initially at one, starts decreasing until dalees zero. Furthermore, when the pause
signal is de-asserted, the opposite behavior happes DSD goes from zero back to one
whereas the mute signal goes from one back to @iearly, these test waveforms
proved the proper functionality of our Mixer. Mokew, since the representation of gain,
volume, or multiplication is unconceivable in aitdomain, the Mixer converted the 1-
bit DSD music signal to a multi-bit signal.

As for the Sigma-Delta Modulator (SDM), its purpasgas to bring back the multi-bit
signal obtained from the mixer to the 1-bit domaiswell as filtering the noise beyond
the audible frequencies. Getting a replica of tmt Input signal would denote not only
the proper behavior of the SDM but the proper fiomihg of the entire circuit since the
latter component is connected to the output oftbeumulator. The model used for this
component was illustrative, therefore not functignin real-time, because this required
creating a random DSD signal and over-sampling & llactor of 64 (process that could
not be done in Matlab), then inputting it into BBM. Thus, testing of the filtering of the
noise could not be done. However, the output o8& was tested with our DSD input
being the mute signal because of its trivial natlifee mute input signal and the resulting
output waveform of the SDM are shown in Fig.2 ofp&pdix A. The mute signal is
given by the top waveform, whereas the bottom dwesvs the corresponding SDM
output. We can see that the output of the SDM iexatt replica of the 1-bit DSD input
with the exception of the width of the pulse. Thisadened pulse accounts for the time
delay introduced by the 4 orders of the SDM. Thenesfproper functioning of the SDM
was proved.

The Accumulator, however, could not be tested uMatjab. The main purpose of the

Accumulator was to store the changes experiencedebSD signal and account for the

ELEC 490/492/498 Final Report 14 8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

errors introduced by the mixing operations, and tiis process could not be
demonstrated using Matlab. Therefore, thorouglnigstf the Accumulator was done in

Altera using waveforms simulations. This is dis@ass the next subsection.

4.2 Testing of the Accumulator in Altera

The accumulator does not provide any input to thauit unless the pause is asserted and
then de-asserted; that is, when the pause is edsbd accumulator starts storing the
changes experienced by the signal, and only whepdhse signal is de-asserted that the
accumulator starts to inject the opposite of tredsmnges into the SDM. Part of our
simulation results, which were done using Alteasisted of a simulation of the
correction of the accumulator, which is shown ig.&iof Appendix B. If we pay

attention to the “kdsd” and “kmute” signals we retthat the former reaches a value of
10000 (representing a ‘1’) and the latter reaches@e of zero which denotes that pause
signal was de-asserted and the gains of the DSfalsagnd the mute signal are back to
one and zero respectively. In the meantime, theevaf “accMAG” was still increasing,
hence storing changes into the accumulator, buttook cycle after the de-assertion of
the pause signal the accumulator starts decreasiiigt reached a value of zero. These
constant decrements of the accumulator level coores to the “injection” of the

opposite changes into the SDM. And therefore, tbeutulator is tested and
demonstrated proper behavior.

During the development and design of the proje&TMAB will be used to simulate the
functionality of our operational system. This willovide us with more insight into what
type of signals/waveforms to expect as output,witidaid us in implementing our final
hardware design.

In our final testing phase, a PC (capable of sen®8D signals) will be connected to the
FPGA board, which will in turn be connected to #ma (with analog signal
amplification control). Firstly, our FPGA circuitnyill be left out of the loop and a pause

ELEC 490/492/498 Final Report 15 8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

and un-pause will be performed from the PC- forohhvery obvious distortion noises
should be heard. The same experiment will then dréopned again with our FPGA
circuitry active between the PC and speakers. fiilme a listener should hear a smooth
fade out and fade in of the music signal without distortion noises.

Time permitting, other functionalities of our opioaal system could be exploited such
as muting or skipping a track without any distartiooise. Taking it a step further, we
could implement a more interesting functionalityiximg two tracks, which basically is
the muting functionality done with a “non mute saghn

4 3 Evaluation in Altera

Without a FPGA board, the only other alternativeuson to provide a working model
was to have a software implementation of the dycas opposed to a hardware
implementation. For this purpose, Altera softwagswsed, and since it is a completely
different environment, some difficulties arose ashbw to translate our now-working
Matlab model to an Altera model. For instance, mber representation system had to be
chosen. Firstly, the IEEE Floating point numberrespgntation was considered but
discarded because of the computational complexhieeby introduced. Consequently, a
signed magnitude number representation was choberewhe numbers were scaled up
by a factor of 10,000 in order to avoid the amhigsiintroduced by decimal numbers,
and were represented by 15 bits. This significastigplified the functionality of the
mixer as well as the accumulator. However, in tiEMSblock, the remainder of the
divisions had to be rounded up or down accordingstanost significant bit. A “zero”
means that the magnitude of the decimal is legs @ifaand remainder would be rounded
up, and the opposite is true for a one. If we wereound up, then a one would be added
to the result of the division. Please refer to Amgig B for the SDM schematic. Only the
top hierarchy was shown for neatness and clarith@feport.

Another problem that was faced in Altera was theeslpof operation of the software
itself. Specifically, the components in Matlab wenedeled in real-time; however, in
Altera, the cross-fading of the DSD input signadl &ime mute signal, for example, would

require approximately 15,000 clock cycles to cortgglerhich is equivalent to 45 minutes

ELEC 490/492/498 Final Report 16 8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

of simulation time in Altera, and only after theoss-fading is finished that the
accumulator starts injecting back the errors. Thigke main reason why a Xilinx FPGA
board was needed since it operated at a much fgsted.

The Altera model was divided into two main compdsethe SDM and the rest of the
circuit. The SDM was composed of 4 orders, eaclerohdving the same logic blocks,
namely adders, subtractors, dividers, unit delagd, a quantizer at the end. Therefore, it
was more practical to implement this componentaqisine Graphic Design Files (*.gdf)
provided by the Altera environment. The rest of tireuit, on the other hand, required
more specific and block-oriented computations, edce was designed in VHDL code.
The use of VHDL, however, resulted in some diffimd of its own. More specifically,
having chosen the signed magnitude number reprgantcomputations as simple as an
addition or a subtraction could not be performeadces the only way to recognize a
positive or a negative number was to check the Mighificant Bit (MSB) of the
number. A solution to this problem was to represahthe variables in the circuit by
their MSB as well as their magnitude, which wasegi\by the 14 remaining bits, and
treat them separately.

A schematic of the entire Altera model is givenFig.1 of Appendix B. This figure
shows all the components that were done in Mattatvell as new components, such as
the Pattern Match Detector, the Control Logic YGILU), and the Delay Line.

The purpose of the delay line is to account fordékay introduced by the circuit under a
pause assertion. The delay introduced by the SDMfaand to be equivalent to 6 clock
cycles, and the delay of the combination of theaiand Accumulator was found to be
equivalent to 2 clock cycles. Therefore, an 8-hiftgegister was designed for the delay
line, each bit accounting for one clock cycle.

As for the pattern match detector, a match of 19 litween the processed signal and the
original signal was sufficient for proper functiditya

The CLU commands the switching between the origangthal and the processed signal
only after having a consecutive 10-bit match betw#ee two signals. Moreover, this
logic unit has as one of its inputs, a Master-pausech represents the physical pausing
and un-pausing of the music by the user. A pointtivenentioning is how the Master-

pause affects our electronic circuitry. For refeeenfig.2 of Appendix B shows the

ELEC 490/492/498 Final Report 17 8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

activation of the internal pause signal resultirapf the activation of the Master-pause.
The variable “pcount” from the figure denotes toemt inside the pattern match detector.
From this figure, we can see that as the Mastesg@&iasserted at 470ms, pcount start
increasing from zero, and when pcount reaches #igevof 10, that means that 10
consecutive bits are matching and the CLU, in tasserts the internal pause signal. An
analog situation to this one is the pause deaativaivhich is shown in fig.3 of Appendix
B. When the Master-pause signal is de-assertesl,résiults in the de-assertion of the
internal pause signal only one clock cycle latarthis case, the CLU does not have to
wait for a 10-bit match, because the switching bickhe original circuit occurs only
when the output of the SDM is matched to the oabsignal, and therefore does not
depend on the de-assertion of the internal pagsalsi

Waveform simulation results done in Altera are dssed in the next subsection. These
simulation results represent component functioealitwhich are put to test, denoting

proper functionality of the model.

4.4 Software Simulation Results

Initially, in the presence of a Xilinx FPGA boaxlr demonstration of a working model
would have consisted of inputting a DSD signal frafaC to the FPGA which would
have been in turn connected to amplified speaksic the listener should have heard a
smooth fade out and fade in of the music signaheut any distortion noises.

However, in our case, proper functioning of our elambnsists of proving that every
component works as expected and thus obtainingtehrbatween the output of the
SDM, which is also the output of the entire circgitand the original DSD input signal.
The first simulation results deals with the behawabthe accumulator. Referring to Fig.4
of Appendix B, we see that both the Master-pauskiernal pause signal are de-
asserted, meaning that the DSD input gain is irsongato 1 and the mute signal is
decreasing to zero, which in turn orders the acdatouto inject back the errors
experienced by the signal into the SDM. These tigas are repeated every clock cycle
until the accumulator level goes back to zero. dxdlie value of the injections, inserting

too many injections in a short period of time worgdult in a distorted signal, and

ELEC 490/492/498 Final Report 18 8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

similarly inserting a few injections in a long padiof time would result in an altered
signal; so, the optimal period of time found wam&:c which corresponds to a value of 2
in our number representation, and which is denbtetthe variable “deIMAG” on the
same figure.

Moreover, as discussed in the previous subsectidrsaown in Fig.2 of Appendix B, the
internal pause is asserted after establishing ahmagtween the original signal and the
processed signal, in which case the gains of thB DPut signal and the mute signal
start to decrease to zero and increase to onectesgg. Furthermore, altering the gains
of these two signals orders the accumulator ta staring these changes as shown in
Fig.2.

On afinal note, having demonstrated the properactions between all the components
in the circuitry, a match between the final DSDnsilgand the original DSD signal should
be proved. Referring to Fig.5 of Appendix B, we He# the accumulator level is brought
down to zero and the error injections to the SDMsiopped as expected. In the
meantime, the pattern match detector is checking D bit match between the final
DSD signal, which corresponds to the output ofS3p#, and the original DSD signal.
Thus, when a value of pcount equal to 10 is regchsteady match is obtained, and the
flag in the CLU is asserted allowing proper switthbetween the processed signal and
the original signal. Therefore, proper working of onodel is demonstrated.

It should be stated, however, that we were liméedo the randomness of the input DSD
signal since, in Altera, the DSD waveform couldyooé done manually. Thus, future
work would consist of downloading our Altera modeto a FPGA board, namely Xilinx
(because of its operating speed), as well as congeabe board to a PC generating a
random DSD signal on the one end, and speakerns andlog signal amplification
control) on the other end, and hence demonstrdigt@rtion-free pausing and un-pausing

of the DSD music signal.

5. CONCLUSION

Currently, there are not many devices that can leaidcontinuities in the DSD domain.

Therefore this project provides an FPGA downloaglalplementation for a working

ELEC 490/492/498 Final Report 19 8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

device that could handle a pause — unpause fumditipmhen listening to a DSD music
signal. In order to accomplish this, it was requiies a first step to convert the single-bit
DSD signal into a multi-bit signal which could hajdin level (volume) information, and
then using &-A modulator reconvert the multi-bit signal backtwariginal single-bit
DSD domain in a distortion free manner. The cirguiequired to accomplish this task
consisted of devices such as a mixer, an accunmuiafmattern match detector, as well as
a control logic unit. Consequently, a Matlab moatak required in order to create
algorithms for these devices and provide a simuatif the entire system. This Matlab
simulation was followed by a hardware implementatioAltera’s development
environment using primarily VHDL code and graphisahematic blocks. The
functionality of the implementation was verifiedte correct and functioning through
waveform results. As future work, the design file®d to be downloaded into an actual
FPGA chip to build a physical device, which woulth our designed system.

ELEC 490/492/498 Final Report 20 8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

6. REFERENCES

1. DSD - Thesis, European Media Master of Arts, Aijam Asselt, Summer 2000
http://www.airjohn.com/dsd/dsd.html

2. Care and Feeding of the One Bit Digital to Analaanerter:
http://www.ee.washington.edu/conselec/CE/kuhn/dr@ininer.htm

3. The Xilinx website:
http://www.xilinx.com

4. SONY CXD2753R reference manual

5. SACD Sony webpage:

http://www.superaudio-cd.com

ELEC 490/492/498 Final Report 21 8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

APPENDIX A — MATLAB FILES
Matlab System Schematic

Fig.1. Matlab Schematic

ELEC 490/492/498 Final Report 22 8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

Matlab C code for Custom Blocks

K Mute Code:

if (*pause ==0) {

if (*kmute < 0.000709) *kmute = 0;

else if (*count == 0)*kmute = *kmute - 0.0D09;
}* ends if */

if (*pause ==1) {

if (*kmute > (1-0.000709)) *kmute = 1,

else if (*count == 0)*kmute = *kmute + 0@009;
H* ends if */

K DSD Code:

*swiOn = *swiOn + *pause;
if (*swiOn == 0) *kdsd = 1,

if (*swiOn >=1){
if (*pause == 0) {
if (*kdsd > (1-0.000709)) *kdsd = 1,
else if (*count == 0)*kdsd = *kdsd + 0@/ 09;
H* ends rising if */
if (*pause == 1) {
if (*kdsd < 0.000709) *kdsd = 0;
else if (*count == 0)*kdsd = *kdsd - 0@709;
M* ends falling if */
*swiOn = 1;
}* ends swiOn=1 if */

ELEC 490/492/498 Final Report 23

8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

Accumulator Code:

*DelSiglnput = 0;

*AccLevel = *AccLevel + *OffsetVal;
if (*AccLevel < -1) *AccLevel = 1 + (*AccLevet 1);
if (*AccLevel > 1) *AcclLevel =-1 + (*AccLevel 1);

if ((*OffsetVal == 0) && (*AccLevel '=0) ¥
If (*AccLevel > 0){
if (*AccLevel < 0.177154195e-3) *AccLevel 50
else {
*AccLevel = *AccLevel - 0.177154195e-3;
*DelSiglnput = 0.177154195e-3;
}* ends ELSE */
}* ends IF for AccLevel decrementation */
If (*AccLevel < 01
if (*AccLevel > (0 - 0.177154195e-3))*AccLel= 0;
else {
*AcclLevel = *AccLevel + 0.177154195e-3;
*DelSiglnput = -0.177154195e-3;
}* ends ELSE */
}* ends IF for AccLevel incrementation */
}/* ends If for AccLevel Reduction */

ELEC 490/492/498 Final Report 24 8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

Matlab Waveforms:

El: i
:I L

: -

=

P =

. | &

=

L] : =
— i ;
AL H -
m i ¥
c |
P
£ -
! P
H & o
: J_:'_ ’
- | -lE |

¢ s i L—L 2o
EFE] =

Fig.2. Cross-fading of DSD input signal and mutmal with respect to pause signal

ELEC 490/492/498 Final Report 25 8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

B & &

o

=
[=]

SE oL L AR

Fig.3. Mute signal as input and corresponding SDitpot

ELEC 490/492/498 Final Report 26 8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

APPENDIX B

Altera System Schematic

i
u

5 il
iy

TR

-
1] |
4.0 1 i
: | iE |
3 y E i !
il z 8 el
£ : & : e
4 [H - | =3
i d g Ex 8l
. | =1 B
i R I
! .].1
-
~

i

Lkt d
it & J aaid Al vl

f

Al L

A

wkd L il

LL LU R

b
Lelonih LR 1]
LIT L= =44

g

T e R
. T

Fig.1. Altera Schematic

ELEC 490/492/498 Final Report 27 8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

Altera SDM Schematic

e RN

suTar i .] pe—————]

I HAALLA. .]

- TCA[13..4]

I HAALLA. .]

IHASLLa..4] §

EUTAS[La..0]

O
- clk
e
CrTacpia..+] ek
surapaa. . o1 b B T o
a

FIHAE[149.. %]
L TEG[13. 4]

— 2Lk

R e T
clk

Inkif14]

L
LR

ELEC 490/492/498 Final Report

tSITEA[13. 4]

B ez icra .67 swraaa. - en
alk g

: : "o
: " & : 0
- & og & =
= : .= :]
: .z H LT
= &) : - : 0o
. = B a F B x
= E : 4oz : S
. a = . -
: - :]
: zu : ::
: E : oo
5 H : [
: - | o= o=
. o . H
x| = T
o o = a
- = o] o
= tHfg
W - E
5 nn -
:) G :
\ﬂ n
e b
: "N
N T
L
A
Zoa
a .
H)
Z .oz oa
:::::
uuuuu
ppppp

xxxxx

uuuuu

28

B
Tl bl
a2
clk
N

THAL[L49..493]
SrTAL[13..0]
LK

f U TALL 2. . 0]

8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

Altera VHDL files by Component

K DSD Block:
LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY K_DSD IS
PORT (Pause, Clock : IN STD_LOGIC;
Count : IN INTEGER RANGE 0 TO 8§;
Pulse : IN INTEGER RANGE 0 TO 2;
kdsd : BUFFER INTEGER RANGE 0 TO 10000);
END K_DSD;

ARCHITECTURE Behavior OF K_DSD IS
BEGIN
PROCESS (Pause, Count, Pulse, Clock)
BEGIN
IF Pulse=1 THEN kdsd<=10000;

ELSIF rising_edge(Clock) THEN

IF (Pause='0' AND Pulse=2) THEN
IF kdsd>9993 THEN kdsd<=10000;
ELSIF Count=0 THEN kdsd<=(kdsd+7);
END IF;

ELSIF (Pause="1' AND Pulse=2) THEN
IF kdsd<7 THEN kdsd<=0;
ELSIF Count=0 THEN kdsd<=(kdsd-7);
END IF;

END IF;

END IF;
END PROCESS;
END Behavior;

K MUTE Block:

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY K_Mute IS
PORT (Pause, Clock : IN STD_LOGIC;
Count : IN INTEGER RANGE 0 TO 8;
Pulse : IN INTEGER RANGE 0 TO 2;

ELEC 490/492/498 Final Report 29

8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

kmute : BUFFER INTEGER RANGE 0 TO 10000);
END K_Mute;

ARCHITECTURE Behavior OF K_Mute IS
BEGIN
PROCESS (Pause, Count, Pulse, Clock)
BEGIN
IF Pulse=1 THEN kmute<=0;

ELSIF rising_edge(Clock) THEN

IF (Pause='0' AND Pulse=2) THEN
IF kmute<7 THEN kmute<=0;
ELSIF Count=0 THEN kmute<=(kmute-7);
END IF;

ELSIF (Pause='1' AND Pulse=2) THEN
IF kmute>9993 THEN kmute<=10000;
ELSIF Count=0 THEN kmute<=(kmute+7);
END IF;

END IF;

END IF;
END PROCESS;
END Behavior;

CNTPUL Block (Initialization Pulseg):

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY cntPul IS
PORT (Clock : IN STD_LOGIC,;

Q : BUFFER INTEGER RANGE 0 TO 2);
END cntPul;
ARCHITECTURE Behavior OF cntPul IS
BEGIN
PROCESS (Clock)
BEGIN

IF rising_edge(Clock) THEN
IF Q=2 THEN Q<=2;
ELSE Q<=(Q+1);
END IF;
END IF;
END PROCESS;
END Behavior;

ELEC 490/492/498 Final Report 30

8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

Counter Block:

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY counter IS
PORT (Clock, Reset: IN STD_LOGIC;
Set : BUFFER STD_LOGIC;
Q : BUFFER INTEGER RANGE 0 TO 8);
END counter;

ARCHITECTURE Behavior OF counter IS
BEGIN
PROCESS (Reset, Clock)
BEGIN
IF Reset="0' THEN Set<="1"
END IF;
IF (Reset="1" AND Set='1") THEN Q<=0; Set<='0",
ELSIF rising_edge(Clock) THEN
IF Q=8 THEN Q<=0;
ELSE Q<=(Q+2);
END IF;
END IF;
END PROCESS;
END Behavior;

Subtractor Block:

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY subtractor IS
PORT (Clock : IN STD_LOGIC;
KMag : IN INTEGER RANGE 0 TO 10000;
offSetMag : BUFFER INTEGER RANGE 0 TO 10000);
END subtractor;

ARCHITECTURE Behavior OF subtractor IS
BEGIN

PROCESS (Clock)

BEGIN

IF rising_edge(Clock) THEN

ELEC 490/492/498 Final Report 31 8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

offSetMag<=(10000 - KMag);

END IF;
END PROCESS;
END Behavior;

Accumulator Block:
LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY ACCUMULATOR IS
PORT (Clock : IN STD_LOGIC;

Pulse : IN INTEGER RANGE 0 TO 2;
offMSB : STD_LOGIC;
offMAG : IN INTEGER RANGE 0 TO 10000;
accLevelMSB : BUFFER STD_LOGIC;
accLevelMAG: BUFFER INTEGER RANGE 0 TO 20000;
delMSB : OUT STD_LOGIC,;
delMAG : BUFFER INTEGER RANGE 0 to 2);

END ACCUMULATOR,;

ARCHITECTURE Behavior OF ACCUMULATOR IS
BEGIN

PROCESS (Clock)

BEGIN

IF rising_edge(Clock) THEN

IF (Pulse=1) THEN
accLevelMSB<='0";
accLevelMAG<=0;

ELSIF (Pulse=2) THEN

delMSB<='0";
delIMAG<=0;

IF (accLevelMSB=0ffMSB) THEN
accLevelMAG<= accLevelMAG + offMAG;

ELSIF (accLevelMAG>=0ffMAG) THEN
accLevelMAG<= accLevelMAG - off MAG,;

ELSIF (off MAG>accLevelMAG) THEN
accLevelMAG<= offMAG - accLevelMAG,;
accLevelMSB<=0ffMSB;

END IF;

ELEC 490/492/498 Final Report 32 8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

IF (accLevelMAG>10000) THEN
accLevelMAG<= (20000 - accLevelMAG);
IF (accLevelMSB='1") THEN accLevelMSB<='0",
ELSE accLevelMSB<="1";
END IF;
END IF;

IF (off MAG=0 AND accLevelMAG/=0) THEN
delMAG<=2;
IF (accLevelMAG<2) THEN acclLevelMAG<=0;
ELSE accLevelMAG<=accLevelMAG - 2;

END IF;
IF (accLevelMSB='0") THEN delMSB<="1";
END IF;
END IF;
END IF;
END IF;

END PROCESS;
END Behavior;

Adder Block:

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY adder IS
PORT (Clock : IN STD_LOGIC;

dsdMSB : IN STD_LOGIC;
muteMSB : IN STD_LOGIC,;
dsdMag : IN INTEGER RANGE 0 TO 10000;
muteMag : IN INTEGER RANGE 0 TO 10000;
totalMag : BUFFER INTEGER RANGE 0 TO 10000;
outMSB : OUT STD_LOGIC);

END adder;

ARCHITECTURE Behavior OF adder IS
BEGIN

PROCESS (Clock)
BEGIN

ELEC 490/492/498 Final Report 33 8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

IF rising_edge(Clock) THEN
IF (dsdMSB=muteMSB) THEN
totalMag<=(dsdMag + muteMag);
outMSB<=dsdMSB;

ELSIF (dsdMag >= muteMag) THEN
totalMag<= (dsdMag - muteMag);
outMSB<=dsdMSB;

ELSIF (muteMag >= dsdMag) THEN
totalMag<= (muteMag - dsdMag);
outMSB<=muteMSB;

END IF;

END IF;
END PROCESS;

END Behavior;

Adder2 Block:

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY adder2 IS
PORT (Clock : IN STD_LOGIC;

dsdMSB : IN STD_LOGIC;
muteMSB : IN STD_LOGIC,;
dsdMag : IN INTEGER RANGE 0 TO 10000;
muteMag : IN INTEGER RANGE 0 TO 2;
totalMag : BUFFER INTEGER RANGE 0 TO 10000;
outMSB : OUT STD_LOGIC);

END adder2;

ARCHITECTURE Behavior OF adder2 IS
BEGIN

PROCESS (Clock)
BEGIN

IF rising_edge(Clock) THEN
IF (dsdMSB=muteMSB) THEN
totalMag<=(dsdMag + muteMag);
outMSB<=dsdMSB;

ELEC 490/492/498 Final Report 34 8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

ELSIF (dsdMag >= muteMag) THEN
totalMag<= (dsdMag - muteMag);
outMSB<=dsdMSB;

ELSIF (muteMag >= dsdMag) THEN
totalMag<= (muteMag - dsdMag);
outMSB<=muteMSB;

END IF;

END IF;
END PROCESS;

END Behavior;

Shifter Block (Delay Line):

library ieee;
use ieee.std_logic_1164.all;
entity shift is
port(C, Sl : in std_logic;
SO : out std_logic);
end shift;
architecture archi of shift is
signal tmp: std_logic_vector(7 downto 0);
begin
process (C)
begin
if (C'event and C="1") then
foriin O to 6 loop
tmp(i+1) <= tmp(i);
end loop;
tmp(0) <= SI;
end if;
end process;
SO <=tmp(7);
end archi;

Pattern Match Detector Block:

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY patern IS

ELEC 490/492/498 Final Report 35

8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

PORT (Clock, DSD, SDM : IN STD_LOGIC,;
flag : OUT STD_LOGIC;
count : BUFFER INTEGER RANGE 0 TO 10);
END patern;

ARCHITECTURE Behavior OF patern IS
BEGIN

PROCESS (Clock)
BEGIN

IF rising_edge(Clock) THEN

IF (DSD=SDM) THEN
IF (count=10) THEN flag<="1";
ELSE count<=count+1;
END IF;
ELSE
count<=0;
flag<='0";
END IF;

END IF;
END PROCESS;

END Behavior;

Switching Control Logic Unit Block:

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY clu IS
PORT (Clock, masterPause, flag, originalDSD, di&D : IN STD_LOGIC,;
pause, finalDSD : OUT STD_LOGIC);
END clu;
ARCHITECTURE Behavior OF clu IS
BEGIN

PROCESS (Clock)

ELEC 490/492/498 Final Report 36 8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

BEGIN
IF rising_edge(Clock) THEN

IF (masterPause="0") THEN

pause<='0";
IF (flag="1") THEN finaIDSD<=originalDSD;
END IF;
ELSE
IF (flag="1") THEN
finaIDSD<=mixedDSD;
pause<='1";
END IF;
END IF,;
END IF;

END PROCESS;

END Behavior;

ELEC 490/492/498 Final Report 37 8/20/2009

Discontinuity Handling In Single-Bit Audio Applicains

Altera Simulation Results:

D LT L] | (5euY 4=
| fiey 4=

0l el ek e s e ool ko) wo | ogod @

0 00 [0 ap ¢

0 AS/ap 40

SRRy By L 0 00 | [o'povmmoe @@=
0 SRR o g

- 1 I Pl [0 £ A (e

E66 ! 000 66 [0 e lpsp @=

0 asned fd=

HEEEE] 0 BSME 4.8 1SELL mefl
LUy i iy iy iy gy o o=
LAl R R ELELE TENNIE] ELLDEIST ey (BT a0k 8 (2] EIE] 2] B ST\
"ATOAOAAAAAAAAM] e
5 U7, B, U Og ST gy suny T oA Bl
| SW/9GH| sl | sucegg| au] [&]8]| T Mt

Fig.2. Master-pause and pause activation

8/20/2009

38

ELEC 490/492/498 Final Report

Discontinuity Handling In Single-Bit Audio Applicains

L]

L

L L

0

L

a5q/euy 4am-

i) 4=

o __@qz_m__ﬂ_ (=
A5klap &=

[0y amiae @
H520E bR

[0 Jainuy s
[0°E1IRspy s
asned =
AENE 18] 5L =@
KZA20|) =
S| ==l

(50 ~@n

S

sl

SWEYSEC

094

B

SW05,

m_:_m}

Hﬁm
!
I

ALLER

SW/E 55/

Al fefe

SWD'LBe| 48d

Fig.3. Pause deactivation

8/20/2009

39

ELEC 490/492/498 Final Report

Discontinuity Handling In Single-Bit Audio Applicains

8/20/2009

40

| QSleul 4=

0 fiey) ¢

| (] [Ehunoad (=

ifi (0" llorwmiep &=

i aShiep @@=

00 | [07pilowwaoe @@=

i Asjyade =

0 ! ifi [0 iy @m=

LIy CAG6 {00001 q I0°e psny (=

I asne (| (=

_ _ . _ | I 25NE JIA1SEL wdl
Uy iU iy Ui iy Iy 2P0 =
LD D ELLD UL Lo IAT 13 Lo EpETETRIUTR([€8 (2 o Sy =0
A UNTDER A RANR AN D eq BORARARIEN AR NiIFD | i) 0=
UL SOl SL SN Sl SYOL sl sl S0l sanl so) sugd A ey
S0} feasiy sgn| P13 [¥H] sup| veis

Fig.4. Accumulator correction
ELEC 490/492/498 Final Report

Discontinuity Handling In Single-Bit Audio Applicains

0000l

U i o i i i e

RN E R R AR RS R SRR ES R AR ENRREORY ST

A EAND A RN ANR SRR A EN A I N EN BT A A EN S R EN RS ENEA AN

0l
0d

I

0ad

I

0d
0000l a

I

|

(50/euy &=

Be|)

[0 glnoad @
[0 1aviniep =
gSlAlap &=

[0 1508 e
S22 @
(05 Jeanuy (=
|17 pspy e
Asned 4=
g5NeJIa]sEL wfilll

HEAI0[] =

AN} =m
050 =4

Ul S0 SoRD) sl se0) SO0 Sl saDl sse) sadl | sl | OMBA

B
sLierd |

BWOETTE| |eau 550011

au [¢]¥]

AE

SLEr0 L 4Ry

8/20/2009

41

ELEC 490/492/498 Final Report

Fig.5. Steady match

