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ABSTRACT 
 

The flexibility of Field-Programmable Gate Arrays (FPGAs) 
encourages design reuse and can greatly enhance the 
upgradability of digital systems. This flexibility is 
particularly useful in the design of highly flexible video 
encoding systems that can accommodate a multitude of 
existing standards as well as the rapid emergence of new 
standards. In this paper, we investigate the use of FPGAs in 
the design of a highly scalable Variable Block Size Motion 
Estimation (VBSME) architecture for the H.264/AVC video 
encoding standard. The scalability of the architecture allows 
one to incorporate the system into low cost single FPGA 
solutions for low resolution encoding applications as well as 
into high performance multi-FPGA solutions targeting high-
resolution video encoding applications. To overcome the 
performance gap between FPGAs and Application Specific 
Integrated Circuits (ASICs), our algorithm intelligently 
increases its parallelism as the design scales while 
minimizing the use of memory bandwidth. The core 
computing unit of the architecture is implemented on 
FPGAs and its performance is reported in this paper. It is 
shown that the computing unit is able to achieve real-time 
40 fps performance for 640x480 resolution VGA video 
while incurring only 4% device utilization on a Xilinx 
XC5VLX330 (Virtex-5) FPGA. With 8 computing units (at 
36% device utilization), the architecture is able to achieve 
real-time 45 fps performance for encoding full 1920x1088 
progressive HDTV video. 
 

Index Terms— Variable Block Size Motion 
Estimation, H.264/AVC, Field-Programmable Gate Arrays 
 

1. INTRODUCTION 
 
The Variable Block Size Motion Estimation (VBSME) 
algorithm is an essential part of the H.264/AVC video-
encoding standard. Relative to Fixed Block Size Motion 
Estimation algorithms, VBSME provides much higher 
compression ratios and picture quality. VBSME algorithms, 
however, are much more computationally expensive. In 
particular, the H.264/AVC standard calls for up to 41 

motion vectors for each macroblock and its corresponding 
subblocks. Due to this high computing demand, many 
hardware architectures have been proposed to accelerate the 
computation of VBSME motion vectors for H.264/AVC 
[1]–[8]. Most of the architectures, however, have been 
implemented in Application Specific Integrated Circuit 
(ASIC) technology. Except for limited commercial 
implementations [9]–[11], little information exists on how 
these algorithms would perform on reconfigurable 
technologies such as Field-Programmable Gate Arrays 
(FPGAs). In particular, the FPGA implementation presented 
in [12] specifically targets portable multimedia devices with 
CIF-level resolution and cannot be easily scaled. On the 
other hand, the FPGA implementation presented in [13] 
only reaches VGA-level resolution and 27 frames per 
second performance. It too cannot be scaled. In this work, 
we propose a scalable hardware VBSME architecture based 
on the Propagate Partial SAD architecture [8] and measure 
its performance on FPGAs as the design scales. 

The use of FPGAs encourages design reuse and can 
greatly enhance the upgradability of digital systems. The 
programmability of FPGAs is particularly useful for highly 
flexible encoding systems that can accommodate a 
multitude of existing standards as well as the emergence of 
new standards. In particular, our design can be incorporated 
into single FPGA solutions targeting low cost low-
resolution applications as well as into multiple FPGA 
designs for high performance high-resolution applications.  

The proposed architecture is based on one of the three 
widely used VBSME architectures — the Propagate Partial 
SAD [1] [8], SAD Tree [7], and the Parallel Sub-Tree [6]. 
The Propagate Partial SAD architecture was selected due to 
its unique blend of efficiency and scalability. While the 
SAD Tree architecture has the highest performance amongst 
the three [7], it, however, requires the support of a complex 
array of shifting registers that must have the capability of 
shifting in both horizontal and vertical directions. This 
array, while efficient to implement in ASICs, consumes a 
large amount of FPGA resources. On the other hand the 
Parallel Sub-Tree architecture is the most compact design 
amongst the three. The architecture, however, inherently 
does not scale well for high performance applications [6].  
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As proposed in [1] and [8], the Propagate Partial SAD 
architecture processes a single group of 16 reference blocks 
at a time. Our design enhances the original design by 
allowing it to be scaled to process several groups of 16 
reference blocks simultaneously. These groups share a large 
amount of their reference pixels. This sharing minimizes the 
increase in memory bandwidth as the design scales and 
makes high performance FPGA-based design feasible. 

The remainder of this paper is organized as follows: 
Section 2 introduces the general Motion Estimation 
algorithm and the Propagate Partial SAD architecture, 
Section 3 presents the scalable VBSME architecture, 
Section 4 evaluates its performance, and section 5 
concludes. 

 
2. HARDWARE MOTION ESTIMATION 

 
Video encoding algorithms typically process one 16x16 
block of pixels (called a macroblock) at a time. The frame 
that contains the macroblocks currently being processed is 
referred to as the current frame. During the encoding 
process, the goal of Motion Estimation (ME) is to find the 
best match for a macroblock from a set of reference pixels 
(where this set is called a search window, and the frame that 
contains this search window is called a reference frame). To 
this end all ME algorithms accomplish this goal through 
three distinct stages of computation. First the macroblock is 
mapped onto a 16x16 block of pixels (called a reference 
block) in the search window, and the absolute difference 
values between the macroblock pixels and the 
corresponding reference block pixels are calculated. Second, 
the Sum of the Absolute Differences (SAD) value is 
calculated for the reference block by summing absolute 
difference values over the entire block. This process repeats 
until a SAD value is calculated for each of the reference 
blocks in the search window. Thirdly, the minimum of all 
the SAD values in the search window is computed and the 
corresponding reference block is used by the encoder to 
calculate the best-match Motion Vector (MV) for the 
macroblock currently being processed. 

Equation 1 and 2 show the arithmetic for calculating the 
SAD value of a reference block such that pixel (x, y) in the 
macroblock is mapped to pixel (rx + x, ry + y) in the search 
window. 
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Where, W and H represent the width and height of the 

macroblock. RW and RH represent the width and height of 
the search window. C(x, y) represents the value of pixel (x, 
y) in the macroblock while R(rx + x, ry + y) represents the 
value of pixel (rx + x, ry + y) in the search window. Note 

that surpassing (vertically) the search window size set in [8], 
this paper assumes a search range of +/- 16 pixels in both 
the horizontal and vertical directions (i.e. RW=48 and 
RH=48). 

Instead of just calculating one SAD per 
macroblock/reference-block pair, VBSME algorithms 
subdivide a 16x16 macroblock into a set of subblocks. 
Correspondingly, the reference block is also divided into 
subblocks and SAD values are then calculated for each of 
the subblocks in addition to the macroblock. In particular, as 
shown in Figure 1, the H.264/AVC standard subdivides a 
macroblock into 40 subblocks of size 16x8, 8x16, 8x8, 8x4, 
4x8, and 4x4. Consequently, for a macroblock, 41 SAD 
values are needed per reference block. 
 1 16x16 2 16x8 2 8x16 4 8x8

8 8x4 8 4x8 16 4x4 

 
Figure 1: Macroblock and Subblocks in VBSME 

 

ref blk 16

16 pixels 

16 pixels

ref blk 1
ref blk 2 A Row of 16 Pixels

Shared Among 16 
Reference Blocks

Figure 2: A Group of 16 Reference Blocks 

The Propagate Partial SAD architecture speeds up the 
computing process of VBSME algorithms by 
simultaneously calculating SAD values for 16 reference 
blocks at a time. In particular, the architecture takes 
advantage of the fact that, in a search window, every vertical 
group of 16 reference blocks share a common row of 16-
pixels (as shown in Figure 2). In the Propagate Partial SAD 
architecture, this common row is then used to 
simultaneously calculate 16 absolute difference values for 
each of the 16 reference blocks. A specialized pipeline 
structure is then used to accumulate these absolute 
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difference values to produce the 41 SAD values per 
reference block at every clock cycle. 
 

3. SYSTEM ARCHITECTURE 
 
The overall structure of the scalable VBSME architecture is 
shown in Figure 3. It consists of a bank of memory that 
stores the search window, an input distribution unit, n Pixel 
Processing Units (PPUs), and two sets of comparators. As in 
[8], the memory storing the search window is divided into 
two partitions. Each partition contains an output of 15+n 
pixels. These outputs are expanded into 2n buses by the 
input distribution unit, where each bus contains 16 pixels. 
The 2n buses are then fed into n PPUs, which have been 
initialized with a macroblock’s pixel values. The PPUs are 
then used to produce n x 41 SAD values at each clock cycle. 
These n x 41 SAD values are then used to compute the 
minimum SAD values of the search window in two steps. 
First the n x 41 SADs are fed into the local parallel 
comparator tree. This tree computes 41 minimum SAD 
values from its n x 41 inputs. These local minimum SAD 
values are then forwarded to the global sequential 
comparator, which determines the 41 minimum SAD values 
for the entire search window. Note that the global 
comparator is of a conventional less-than comparator design 
[8] and the scaling of the VBSME architecture does not 
affect its complexity. 

 

Input Distribution Unit 

Search Window 
Memory

SL 

A B 

A1 A2 An B1 B2 Bn 

n Pixel Processing 
Units (PPUs) 

S1 S2 Sn 

Local Parallel Comparator 
Tree 

S 

Global Sequential 
Comparator 

2n buses 
each 
containing 
16 pixels 

(15+n) pixels (15+n) pixels 

41 SADs 41 SADs 41 SADs 

41 SADs 

41 SADs 

Figure 3: The Scalable VBSME Architecture 

The detailed design of the input distribution unit, the 
PPUs, and the local parallel comparator tree is shown in 
Figure 4. As shown, the core of the scalable VBSME 
architecture is the PPUs, which are based on the Propagate 
Partial SAD architecture. As discussed in Section 2, each 
PPU produces 41 SAD values (corresponding to an entire 
set of SADs for a single reference block) at every clock 
cycle. The number of PPUs utilized in the scalable 
architecture, therefore, corresponds directly to the number 
of reference blocks that can be processed in a clock cycle 
and the overall performance of the system. However, as the 

number of PPUs increases, the output bandwidth required 
for the search window memory increases as well. In 
particular, in order to keep a PPU fully utilized during 
motion estimation, one would require two rows of 16-pixels 
to be forwarded from the search window memory to the 
PPU at every clock cycle (one row from each of the search 
window memory partitions) [8]. Typically a byte is used to 
encode a pixel, therefore one needs to transport 32 bytes 
from the search window to a PPU in every clock cycle. 

 

S4 S3S2S1

A4 B4 B3A3B2A2B1A1

PPU
#1 

PPU
#2 

PPU
#3 

PPU 
#4 

Comparator Comparator 

Comparator

41 SADs 41 SADs 41 SADs 41 SADs 

41 SADs 41 SADs 

41 SADs

Reference Row from Memory Partition A 
1 2 3 4 16 171819 Reference Row from Memory Partition B

1 2 3 4 16 171819
Pixel 
Indices

Pixel 
Indices 

Figure 4: Input Distribution Unit, PPUs and Local 
Comparators 

A naive approach would be to simply increase the output 
of the search window memory by 32 bytes for every 
additional PPU. However, this can quickly exhaust the 
internal memory bandwidth of an FPGA (if the search 
window is stored on the same chip as the PPUs) or the IO 
pin limit of even the largest modern FPGAs (if the search 
window is stored off chip). For example, the Xilinx 
XC5VLX330 is the largest device that Xilinx currently 
offers. It contains 1200 available IO pins. Assume that the 
search window is stored off chip. Implementing a single 
PPU on the XC5VLX330 would require 256 input pins. 
Implementing four PPU copies would require 1024 pins 
(over 85% of the available IOs on the XC5VLX330) – 
leaving an insufficient number of IOs for output and control 
signals. 

More importantly, the above approach does not take into 
account the large number of pixels that are shared among 
the reference blocks. For example, Figure 5 shows 32 
reference blocks in a search window. These blocks are 
divided into two groups where each group contains 16 
reference blocks. Within a group, the reference blocks are 
organized as in Figure 2, where all blocks are contained 
within a single 16-pixel wide column and one block is offset 
from the next by a single row of pixels.  
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16 pixels 

15 Pixels Shared
between PPU x 
and PPU (x + 1)

Pixel for PPU (x + 1)

Pixel for PPU x

16 Reference Blocks 
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16 Reference Blocks 
for PPU x 

1 pixel 

16 pixels 

 
Figure 5: Sharing of Pixels among PPUs 

As in Figure 2, 16 reference blocks from the same group 
share a row of 16 common pixels. Furthermore, since one 
group is offset from another by a single column of pixels, all 
32 blocks in figure 5 share 15 common pixels. 

To increase performance, these two groups can be 
simultaneously processed by two PPUs (shown as PPU x 
and PPU (x+1) in the figure). Since 15 pixels are shared 
between the groups, one would require 17 pixels (instead of 
32) to be read from the search window at a time. In 
particular, if pixels (a, y), (a+1, y), …, (a+15, y) of the 
search window are being processed by PPU x, pixels (a+1, 
y), (a+2, y), …, (a+16, y) should be simultaneously 
processed by PPU (x+1).  

In general, to fully utilize n PPUs, where n ≤  33, in a 
48x48 search window, one would require (15 + n) pixels to 
be read from each partition of the search window memory 
for every clock cycle. These signals should then be 
distributed using the topology shown in Figure 4. 

At its output, each PPU shown in Figure 4 produces 41 
SAD values at every clock cycle. These SAD values amount 
to 573 bits of data. To keep the output width constant as the 
number of PPUs increases, the local parallel comparator tree 
can be implemented on the same FPGA as the PPUs. Note 
that the number of comparator tree stages is equal to 
� �)(log2 n  where n is the number of PPUs that the 
architecture contains. We observe that by registering the 
values produced at each stage of the comparator tree one can 
ensure that the comparator tree does not become the critical 
path of the system. Consequently the overall system 
performance does not degrade significantly when an 
increasing number of PPUs are used. Note that, as shown in 
Table 1 there is a drop in clock speed of 1 to 2 MHz when 
the number of PPUs is increased from 1 to 4 units. This 
degradation is due to a slight increase in routing delay as the 
size of the comparator tree grows and is not due to any 
increase in logic delay. 

When targeting an FPGA with a moderate number of 
user-available IO pins, the scalable system shown in Figure 
4 may still become an IO bottleneck. Consider the case of a 
system scaled to 8 PPUs. With each pixel encoded using a 
single byte, the input pixels will amount to 46 Bytes (16 
bytes from each partition of the search window memory for 
the initial PPU followed by 1 extra byte from each partition 
for the 7 additional PPUs). The output will consist of 41 
SAD values (irrelevant to the number of PPUs used) and 
would consume around 72 bytes of IO. When control signals 
are considered, the total IO requirement of the circuit shown 
in Figure 4 becomes 119 bytes. 

On devices where such a number of IOs is not available, 
the on-chip RAM blocks available on most modern FPGA 
devices can be utilized to buffer the search window. For a 
search window of 48x48 pixels, this translates to 2304 bytes 
of data per search window. Using double buffering, while 
the current search window is being processed, another 2304 
bytes of on-chip memory can be utilized to receive the next 
search window, hence greatly reducing the overall number 
of required IOs. 

 
4. EXPERIMENTAL RESULTS 

 
To evaluate the performance and area efficiency of the 
scalable VBSME architecture, we implemented five 
variations of the design shown in Figure 4 on a Xilinx 
Vertex 5 XC5VLX330 FPGA. Each design contains 1, 2, 4, 
8, or 16 PPUs. As the design scales, the target resolution 
scales as well from VGA (640x480) to High-Definition 
(HD) Video (1920x1088). 

These designs are implemented in Verilog and 
synthesized using the Xilinx Synthesis Tool (XST) in the 
Xilinx Integrated Software Environment (ISE). The 
synthesis constraints are set to maximize speed. All designs 
meet the IO constraint of XC5VLX330 with 70%, 71%, 
74%, 79%, and 90% IO utilization, respectively. The 
performance and area of each implementation is 
summarized in Table 1. 

Table 1: Area and Performance Results 
Area* Performance 

Slice LUTs Slice DFFs# of 
PPUs

# (K) % # (K) % Target Resolution Freq.
(MHz) fps 

1 8.71 4.20 3.42 1.65 640x480 (VGA) 200.6 40 
2 18.5 8.92 5.49 2.65 800x608 (SVGA) 199.0 50 
4 37.8 18.2 9.64 4.65 1024x768 (XVGA) 198.3 61 
8 76.4 36.8 18.0 8.68 1920x1088 (HD Video) 198.3 45 
16 154 74.3 34.6 16.7 1920x1088 (HD Video) 198.3 91 

* Xilinx’s Vertex 5 devices use 4 DFFs & 4 6-input LUTs per Slice 
Column 1 of the table lists the number of PPUs in the 

design. Columns 2 and 3 lists the number of LUTs required 
for the design and the number of LUTs required as a 
percentage of the total number of LUTs in the FPGA, 
respectively. The same values are summarized in column 4 
and 5 for DFFs. Finally column 6 lists the target resolution 
of each design. The maximum operating frequencies of the 
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circuits are shown in column 7 and their corresponding 
frame-per-second (fps) performances are shown in column 
8. 

The fact that the circuit performance remains 
consistently near 200 MHz as the design scales from 1 to 16 
PPUs offers much promise for FPGA-based H.264 motion 
estimation especially as future resolutions are scaled beyond 
HD Video. Table 1 shows that real time motion estimation 
performances can be achieved with 1, 2, 4, and 8 PPUs for 
the resolutions of VGA, SVGA, XVGA, and HD Video, 
respectively. It also shows that with 16 PPUs and beyond 
one can achieve real time motion estimation performance 
for resolutions that are beyond HD Video. 

Note that the frame-per-second performances in column 
8 of Table 1 are calculated based on the following formula: 

 

)__(
)(

refFramesFrameperc
nfrequency

×
×    (3) 

 
where frequency is the maximum operating frequency of a 
circuit, n is the number of PPUs used in the circuit, 
c_per_Frame is the total number of cycles it takes to process 
all of the macroblocks in a current frame, and refFrames is 
the number of reference frames that a macroblock must be 
compared to. In this work refFrames is always set to 4, as is 
required for full H.264 compatibility. 

In particular, c_per_Frame is defined as: 
 

� ×
3

1

)_____( MBtypepercMBstypen   (4) 

 
where n_type_MBs is the number of macroblocks that exist 
in the current frame resolution for a specific type of 
macroblock (out of three types), and c_per_type_MB is the 
number of cycles it takes to process that specific type of 
macroblock. 

For our fps calculations, a macroblock is classified as 
one of three types of macroblocks according to the region(s) 
it occupies within a current frame. These three types are full 
search, border search, and corner search macroblocks. The 
position of a macroblock within a current frame limits the 
size of its search window, and the search window size 
determines the number of reference blocks that need to be 
compared to a macroblock. 

For example, a macroblock located in the top-right 
corner of a current frame will only have an available search 
range of 16 pixels to its left and to its bottom in the 
reference frame (17x17 reference blocks). Such a 
macroblock is classified as a corner search macroblock. This 
is in contrast to macroblocks located in the centre of a 
current frame which will have a full search range of +/- 16 
pixels in both the vertical and horizontal directions (33x33 
reference blocks). Such macroblocks are classified as full 
search macroblocks. Similarly macroblocks running along 
the vertical and horizontal edges of a current frame (and not 

being one of the 4 corner macroblocks) will have their 
search window constricted on one side by one of the current 
frame’s four borders (33x17 reference blocks). These 
macroblocks are classified as border search macroblocks. 

The expressions used to calculate the n_type_MBs 
values for each of the three macroblock classifications, 
given a specific frame resolution, are provided below. 

)4(

:
256)32()32(

:
constant)(4

:
256)(

:

smacroblockcornersmacroblocksearchfull
smacroblockTotal

smacroblocksearchborder
frfc

smacroblocksearchfull

smacroblocksearchcorner
frfc

framecurrentainsmacroblockTotal

+
−

÷−×−

÷×

 

where fc and fr are the number of columns of pixels and the 
number of rows of pixels of a current frame, respectively, 
and 256 is the number of pixels contained in a macroblock. 
For example, a frame of full 1088p HD resolution video 
corresponds to a frame size of 1920 (fc) columns of pixels 
by 1088 (fr) rows of pixels. Therefore, the frame contains 
8160 macroblocks in total with 4 corner search, 7788 full 
search, and 368 border search macroblocks. 

Recall (from Section 2) that the calculations for a single 
reference block are completed by a PPU in every clock 
cycle. Thus the c_per_type_MB values have a direct one-to-
one relation to the number of reference blocks that need to 
be compared for each of the three types of macroblocks as 
explained above. Therefore the c_per_type_MB values are 
1089 (33x33), 561 (33x17), and 289 (17x17) for the full 
search, border search, and corner search macroblocks 
respectively. 
 

5. CONCLUSIONS 
 

Based on a survey of present FPGA-based H.264 VBSME 
architectures ([12]-[13]), the proposed architecture is the 
first to reach HD-level real time performances. We found 
that the architecture is able to perform real time (45 fps) 
H.264 Motion Estimation on 1920x1088 progressive HD 
video and is capable of being scaled for higher resolutions. 
The performance is measured with four reference frames, 
and a search window size of 48x48 pixels.  When scaled for 
HD-level performance, the architecture utilizes 77 K LUTs 
and 18 K DFFs (with 8 processing units), and has a 
maximum clock frequency of 198 MHz when implemented 
on a Xilinx XC5VLX330 (Virtex-5) FPGA. Furthermore, 
the scalability of the architecture makes it suitable for 
FPGA-based applications where the upgradeability and 
flexibility of the video encoder are essential requirements. 
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