
A SCALABLE ARCHITECTURE FOR VARIABLE BLOCK SIZE MOTION ESTIMATION
ON FIELD-PROGRAMMABLE GATE ARRAYS

Theepan Moorthy and Andy Ye

Department of Electrical and Computer Engineering

Ryerson University
350 Victoria Street, Toronto, Ontario, Canada M5B 2K3

tmoorthy@ee.ryerson.ca, aye@ee.ryerson.ca

ABSTRACT

The flexibility of Field-Programmable Gate Arrays (FPGAs)
encourages design reuse and can greatly enhance the
upgradability of digital systems. This flexibility is
particularly useful in the design of highly flexible video
encoding systems that can accommodate a multitude of
existing standards as well as the rapid emergence of new
standards. In this paper, we investigate the use of FPGAs in
the design of a highly scalable Variable Block Size Motion
Estimation (VBSME) architecture for the H.264/AVC video
encoding standard. The scalability of the architecture allows
one to incorporate the system into low cost single FPGA
solutions for low resolution encoding applications as well as
into high performance multi-FPGA solutions targeting high-
resolution video encoding applications. To overcome the
performance gap between FPGAs and Application Specific
Integrated Circuits (ASICs), our algorithm intelligently
increases its parallelism as the design scales while
minimizing the use of memory bandwidth. The core
computing unit of the architecture is implemented on
FPGAs and its performance is reported in this paper. It is
shown that the computing unit is able to achieve real-time
40 fps performance for 640x480 resolution VGA video
while incurring only 4% device utilization on a Xilinx
XC5VLX330 (Virtex-5) FPGA. With 8 computing units (at
36% device utilization), the architecture is able to achieve
real-time 45 fps performance for encoding full 1920x1088
progressive HDTV video.

Index Terms— Variable Block Size Motion
Estimation, H.264/AVC, Field-Programmable Gate Arrays

1. INTRODUCTION

The Variable Block Size Motion Estimation (VBSME)
algorithm is an essential part of the H.264/AVC video-
encoding standard. Relative to Fixed Block Size Motion
Estimation algorithms, VBSME provides much higher
compression ratios and picture quality. VBSME algorithms,
however, are much more computationally expensive. In
particular, the H.264/AVC standard calls for up to 41

motion vectors for each macroblock and its corresponding
subblocks. Due to this high computing demand, many
hardware architectures have been proposed to accelerate the
computation of VBSME motion vectors for H.264/AVC
[1]–[8]. Most of the architectures, however, have been
implemented in Application Specific Integrated Circuit
(ASIC) technology. Except for limited commercial
implementations [9]–[11], little information exists on how
these algorithms would perform on reconfigurable
technologies such as Field-Programmable Gate Arrays
(FPGAs). In particular, the FPGA implementation presented
in [12] specifically targets portable multimedia devices with
CIF-level resolution and cannot be easily scaled. On the
other hand, the FPGA implementation presented in [13]
only reaches VGA-level resolution and 27 frames per
second performance. It too cannot be scaled. In this work,
we propose a scalable hardware VBSME architecture based
on the Propagate Partial SAD architecture [8] and measure
its performance on FPGAs as the design scales.

The use of FPGAs encourages design reuse and can
greatly enhance the upgradability of digital systems. The
programmability of FPGAs is particularly useful for highly
flexible encoding systems that can accommodate a
multitude of existing standards as well as the emergence of
new standards. In particular, our design can be incorporated
into single FPGA solutions targeting low cost low-
resolution applications as well as into multiple FPGA
designs for high performance high-resolution applications.

The proposed architecture is based on one of the three
widely used VBSME architectures — the Propagate Partial
SAD [1] [8], SAD Tree [7], and the Parallel Sub-Tree [6].
The Propagate Partial SAD architecture was selected due to
its unique blend of efficiency and scalability. While the
SAD Tree architecture has the highest performance amongst
the three [7], it, however, requires the support of a complex
array of shifting registers that must have the capability of
shifting in both horizontal and vertical directions. This
array, while efficient to implement in ASICs, consumes a
large amount of FPGA resources. On the other hand the
Parallel Sub-Tree architecture is the most compact design
amongst the three. The architecture, however, inherently
does not scale well for high performance applications [6].

978-1-4244-1643-1/08/$25 © 2008 IEEE

001303

As proposed in [1] and [8], the Propagate Partial SAD
architecture processes a single group of 16 reference blocks
at a time. Our design enhances the original design by
allowing it to be scaled to process several groups of 16
reference blocks simultaneously. These groups share a large
amount of their reference pixels. This sharing minimizes the
increase in memory bandwidth as the design scales and
makes high performance FPGA-based design feasible.

The remainder of this paper is organized as follows:
Section 2 introduces the general Motion Estimation
algorithm and the Propagate Partial SAD architecture,
Section 3 presents the scalable VBSME architecture,
Section 4 evaluates its performance, and section 5
concludes.

2. HARDWARE MOTION ESTIMATION

Video encoding algorithms typically process one 16x16
block of pixels (called a macroblock) at a time. The frame
that contains the macroblocks currently being processed is
referred to as the current frame. During the encoding
process, the goal of Motion Estimation (ME) is to find the
best match for a macroblock from a set of reference pixels
(where this set is called a search window, and the frame that
contains this search window is called a reference frame). To
this end all ME algorithms accomplish this goal through
three distinct stages of computation. First the macroblock is
mapped onto a 16x16 block of pixels (called a reference
block) in the search window, and the absolute difference
values between the macroblock pixels and the
corresponding reference block pixels are calculated. Second,
the Sum of the Absolute Differences (SAD) value is
calculated for the reference block by summing absolute
difference values over the entire block. This process repeats
until a SAD value is calculated for each of the reference
blocks in the search window. Thirdly, the minimum of all
the SAD values in the search window is computed and the
corresponding reference block is used by the encoder to
calculate the best-match Motion Vector (MV) for the
macroblock currently being processed.

Equation 1 and 2 show the arithmetic for calculating the
SAD value of a reference block such that pixel (x, y) in the
macroblock is mapped to pixel (rx + x, ry + y) in the search
window.

��
−

=

−

=
−++=

1

0

1

0
),(),(),(

W

x

H

y
yxCyryxrxRryrxSAD (1)

[]16,0 −∈ RWrx , []16,0 −∈ RHry (2)

Where, W and H represent the width and height of the

macroblock. RW and RH represent the width and height of
the search window. C(x, y) represents the value of pixel (x,
y) in the macroblock while R(rx + x, ry + y) represents the
value of pixel (rx + x, ry + y) in the search window. Note

that surpassing (vertically) the search window size set in [8],
this paper assumes a search range of +/- 16 pixels in both
the horizontal and vertical directions (i.e. RW=48 and
RH=48).

Instead of just calculating one SAD per
macroblock/reference-block pair, VBSME algorithms
subdivide a 16x16 macroblock into a set of subblocks.
Correspondingly, the reference block is also divided into
subblocks and SAD values are then calculated for each of
the subblocks in addition to the macroblock. In particular, as
shown in Figure 1, the H.264/AVC standard subdivides a
macroblock into 40 subblocks of size 16x8, 8x16, 8x8, 8x4,
4x8, and 4x4. Consequently, for a macroblock, 41 SAD
values are needed per reference block.
 1 16x16 2 16x8 2 8x16 4 8x8

8 8x4 8 4x8 16 4x4

Figure 1: Macroblock and Subblocks in VBSME

ref blk 16

16 pixels

16 pixels

ref blk 1
ref blk 2 A Row of 16 Pixels

Shared Among 16
Reference Blocks

Figure 2: A Group of 16 Reference Blocks

The Propagate Partial SAD architecture speeds up the
computing process of VBSME algorithms by
simultaneously calculating SAD values for 16 reference
blocks at a time. In particular, the architecture takes
advantage of the fact that, in a search window, every vertical
group of 16 reference blocks share a common row of 16-
pixels (as shown in Figure 2). In the Propagate Partial SAD
architecture, this common row is then used to
simultaneously calculate 16 absolute difference values for
each of the 16 reference blocks. A specialized pipeline
structure is then used to accumulate these absolute

001304

difference values to produce the 41 SAD values per
reference block at every clock cycle.

3. SYSTEM ARCHITECTURE

The overall structure of the scalable VBSME architecture is
shown in Figure 3. It consists of a bank of memory that
stores the search window, an input distribution unit, n Pixel
Processing Units (PPUs), and two sets of comparators. As in
[8], the memory storing the search window is divided into
two partitions. Each partition contains an output of 15+n
pixels. These outputs are expanded into 2n buses by the
input distribution unit, where each bus contains 16 pixels.
The 2n buses are then fed into n PPUs, which have been
initialized with a macroblock’s pixel values. The PPUs are
then used to produce n x 41 SAD values at each clock cycle.
These n x 41 SAD values are then used to compute the
minimum SAD values of the search window in two steps.
First the n x 41 SADs are fed into the local parallel
comparator tree. This tree computes 41 minimum SAD
values from its n x 41 inputs. These local minimum SAD
values are then forwarded to the global sequential
comparator, which determines the 41 minimum SAD values
for the entire search window. Note that the global
comparator is of a conventional less-than comparator design
[8] and the scaling of the VBSME architecture does not
affect its complexity.

Input Distribution Unit

Search Window
Memory

SL

A B

A1 A2 An B1 B2 Bn

n Pixel Processing
Units (PPUs)

S1 S2 Sn

Local Parallel Comparator
Tree

S

Global Sequential
Comparator

2n buses
each
containing
16 pixels

(15+n) pixels (15+n) pixels

41 SADs 41 SADs 41 SADs

41 SADs

41 SADs

Figure 3: The Scalable VBSME Architecture

The detailed design of the input distribution unit, the
PPUs, and the local parallel comparator tree is shown in
Figure 4. As shown, the core of the scalable VBSME
architecture is the PPUs, which are based on the Propagate
Partial SAD architecture. As discussed in Section 2, each
PPU produces 41 SAD values (corresponding to an entire
set of SADs for a single reference block) at every clock
cycle. The number of PPUs utilized in the scalable
architecture, therefore, corresponds directly to the number
of reference blocks that can be processed in a clock cycle
and the overall performance of the system. However, as the

number of PPUs increases, the output bandwidth required
for the search window memory increases as well. In
particular, in order to keep a PPU fully utilized during
motion estimation, one would require two rows of 16-pixels
to be forwarded from the search window memory to the
PPU at every clock cycle (one row from each of the search
window memory partitions) [8]. Typically a byte is used to
encode a pixel, therefore one needs to transport 32 bytes
from the search window to a PPU in every clock cycle.

S4 S3S2S1

A4 B4 B3A3B2A2B1A1

PPU
#1

PPU
#2

PPU
#3

PPU
#4

Comparator Comparator

Comparator

41 SADs 41 SADs 41 SADs 41 SADs

41 SADs 41 SADs

41 SADs

Reference Row from Memory Partition A
1 2 3 4 16 171819 Reference Row from Memory Partition B

1 2 3 4 16 171819
Pixel
Indices

Pixel
Indices

Figure 4: Input Distribution Unit, PPUs and Local
Comparators

A naive approach would be to simply increase the output
of the search window memory by 32 bytes for every
additional PPU. However, this can quickly exhaust the
internal memory bandwidth of an FPGA (if the search
window is stored on the same chip as the PPUs) or the IO
pin limit of even the largest modern FPGAs (if the search
window is stored off chip). For example, the Xilinx
XC5VLX330 is the largest device that Xilinx currently
offers. It contains 1200 available IO pins. Assume that the
search window is stored off chip. Implementing a single
PPU on the XC5VLX330 would require 256 input pins.
Implementing four PPU copies would require 1024 pins
(over 85% of the available IOs on the XC5VLX330) –
leaving an insufficient number of IOs for output and control
signals.

More importantly, the above approach does not take into
account the large number of pixels that are shared among
the reference blocks. For example, Figure 5 shows 32
reference blocks in a search window. These blocks are
divided into two groups where each group contains 16
reference blocks. Within a group, the reference blocks are
organized as in Figure 2, where all blocks are contained
within a single 16-pixel wide column and one block is offset
from the next by a single row of pixels.

001305

 16 pixels

16 pixels

15 Pixels Shared
between PPU x
and PPU (x + 1)

Pixel for PPU (x + 1)

Pixel for PPU x

16 Reference Blocks
for PPU (x + 1)

16 Reference Blocks
for PPU x

1 pixel

16 pixels

Figure 5: Sharing of Pixels among PPUs

As in Figure 2, 16 reference blocks from the same group
share a row of 16 common pixels. Furthermore, since one
group is offset from another by a single column of pixels, all
32 blocks in figure 5 share 15 common pixels.

To increase performance, these two groups can be
simultaneously processed by two PPUs (shown as PPU x
and PPU (x+1) in the figure). Since 15 pixels are shared
between the groups, one would require 17 pixels (instead of
32) to be read from the search window at a time. In
particular, if pixels (a, y), (a+1, y), …, (a+15, y) of the
search window are being processed by PPU x, pixels (a+1,
y), (a+2, y), …, (a+16, y) should be simultaneously
processed by PPU (x+1).

In general, to fully utilize n PPUs, where n ≤ 33, in a
48x48 search window, one would require (15 + n) pixels to
be read from each partition of the search window memory
for every clock cycle. These signals should then be
distributed using the topology shown in Figure 4.

At its output, each PPU shown in Figure 4 produces 41
SAD values at every clock cycle. These SAD values amount
to 573 bits of data. To keep the output width constant as the
number of PPUs increases, the local parallel comparator tree
can be implemented on the same FPGA as the PPUs. Note
that the number of comparator tree stages is equal to
� �)(log2 n where n is the number of PPUs that the
architecture contains. We observe that by registering the
values produced at each stage of the comparator tree one can
ensure that the comparator tree does not become the critical
path of the system. Consequently the overall system
performance does not degrade significantly when an
increasing number of PPUs are used. Note that, as shown in
Table 1 there is a drop in clock speed of 1 to 2 MHz when
the number of PPUs is increased from 1 to 4 units. This
degradation is due to a slight increase in routing delay as the
size of the comparator tree grows and is not due to any
increase in logic delay.

When targeting an FPGA with a moderate number of
user-available IO pins, the scalable system shown in Figure
4 may still become an IO bottleneck. Consider the case of a
system scaled to 8 PPUs. With each pixel encoded using a
single byte, the input pixels will amount to 46 Bytes (16
bytes from each partition of the search window memory for
the initial PPU followed by 1 extra byte from each partition
for the 7 additional PPUs). The output will consist of 41
SAD values (irrelevant to the number of PPUs used) and
would consume around 72 bytes of IO. When control signals
are considered, the total IO requirement of the circuit shown
in Figure 4 becomes 119 bytes.

On devices where such a number of IOs is not available,
the on-chip RAM blocks available on most modern FPGA
devices can be utilized to buffer the search window. For a
search window of 48x48 pixels, this translates to 2304 bytes
of data per search window. Using double buffering, while
the current search window is being processed, another 2304
bytes of on-chip memory can be utilized to receive the next
search window, hence greatly reducing the overall number
of required IOs.

4. EXPERIMENTAL RESULTS

To evaluate the performance and area efficiency of the
scalable VBSME architecture, we implemented five
variations of the design shown in Figure 4 on a Xilinx
Vertex 5 XC5VLX330 FPGA. Each design contains 1, 2, 4,
8, or 16 PPUs. As the design scales, the target resolution
scales as well from VGA (640x480) to High-Definition
(HD) Video (1920x1088).

These designs are implemented in Verilog and
synthesized using the Xilinx Synthesis Tool (XST) in the
Xilinx Integrated Software Environment (ISE). The
synthesis constraints are set to maximize speed. All designs
meet the IO constraint of XC5VLX330 with 70%, 71%,
74%, 79%, and 90% IO utilization, respectively. The
performance and area of each implementation is
summarized in Table 1.

Table 1: Area and Performance Results
Area* Performance

Slice LUTs Slice DFFs# of
PPUs

(K) % # (K) % Target Resolution Freq.
(MHz) fps

1 8.71 4.20 3.42 1.65 640x480 (VGA) 200.6 40
2 18.5 8.92 5.49 2.65 800x608 (SVGA) 199.0 50
4 37.8 18.2 9.64 4.65 1024x768 (XVGA) 198.3 61
8 76.4 36.8 18.0 8.68 1920x1088 (HD Video) 198.3 45
16 154 74.3 34.6 16.7 1920x1088 (HD Video) 198.3 91

* Xilinx’s Vertex 5 devices use 4 DFFs & 4 6-input LUTs per Slice
Column 1 of the table lists the number of PPUs in the

design. Columns 2 and 3 lists the number of LUTs required
for the design and the number of LUTs required as a
percentage of the total number of LUTs in the FPGA,
respectively. The same values are summarized in column 4
and 5 for DFFs. Finally column 6 lists the target resolution
of each design. The maximum operating frequencies of the

001306

circuits are shown in column 7 and their corresponding
frame-per-second (fps) performances are shown in column
8.

The fact that the circuit performance remains
consistently near 200 MHz as the design scales from 1 to 16
PPUs offers much promise for FPGA-based H.264 motion
estimation especially as future resolutions are scaled beyond
HD Video. Table 1 shows that real time motion estimation
performances can be achieved with 1, 2, 4, and 8 PPUs for
the resolutions of VGA, SVGA, XVGA, and HD Video,
respectively. It also shows that with 16 PPUs and beyond
one can achieve real time motion estimation performance
for resolutions that are beyond HD Video.

Note that the frame-per-second performances in column
8 of Table 1 are calculated based on the following formula:

)__(
)(

refFramesFrameperc
nfrequency

×
× (3)

where frequency is the maximum operating frequency of a
circuit, n is the number of PPUs used in the circuit,
c_per_Frame is the total number of cycles it takes to process
all of the macroblocks in a current frame, and refFrames is
the number of reference frames that a macroblock must be
compared to. In this work refFrames is always set to 4, as is
required for full H.264 compatibility.

In particular, c_per_Frame is defined as:

� ×
3

1

)_____(MBtypepercMBstypen (4)

where n_type_MBs is the number of macroblocks that exist
in the current frame resolution for a specific type of
macroblock (out of three types), and c_per_type_MB is the
number of cycles it takes to process that specific type of
macroblock.

For our fps calculations, a macroblock is classified as
one of three types of macroblocks according to the region(s)
it occupies within a current frame. These three types are full
search, border search, and corner search macroblocks. The
position of a macroblock within a current frame limits the
size of its search window, and the search window size
determines the number of reference blocks that need to be
compared to a macroblock.

For example, a macroblock located in the top-right
corner of a current frame will only have an available search
range of 16 pixels to its left and to its bottom in the
reference frame (17x17 reference blocks). Such a
macroblock is classified as a corner search macroblock. This
is in contrast to macroblocks located in the centre of a
current frame which will have a full search range of +/- 16
pixels in both the vertical and horizontal directions (33x33
reference blocks). Such macroblocks are classified as full
search macroblocks. Similarly macroblocks running along
the vertical and horizontal edges of a current frame (and not

being one of the 4 corner macroblocks) will have their
search window constricted on one side by one of the current
frame’s four borders (33x17 reference blocks). These
macroblocks are classified as border search macroblocks.

The expressions used to calculate the n_type_MBs
values for each of the three macroblock classifications,
given a specific frame resolution, are provided below.

)4(

:
256)32()32(

:
constant)(4

:
256)(

:

smacroblockcornersmacroblocksearchfull
smacroblockTotal

smacroblocksearchborder
frfc

smacroblocksearchfull

smacroblocksearchcorner
frfc

framecurrentainsmacroblockTotal

+
−

÷−×−

÷×

where fc and fr are the number of columns of pixels and the
number of rows of pixels of a current frame, respectively,
and 256 is the number of pixels contained in a macroblock.
For example, a frame of full 1088p HD resolution video
corresponds to a frame size of 1920 (fc) columns of pixels
by 1088 (fr) rows of pixels. Therefore, the frame contains
8160 macroblocks in total with 4 corner search, 7788 full
search, and 368 border search macroblocks.

Recall (from Section 2) that the calculations for a single
reference block are completed by a PPU in every clock
cycle. Thus the c_per_type_MB values have a direct one-to-
one relation to the number of reference blocks that need to
be compared for each of the three types of macroblocks as
explained above. Therefore the c_per_type_MB values are
1089 (33x33), 561 (33x17), and 289 (17x17) for the full
search, border search, and corner search macroblocks
respectively.

5. CONCLUSIONS

Based on a survey of present FPGA-based H.264 VBSME
architectures ([12]-[13]), the proposed architecture is the
first to reach HD-level real time performances. We found
that the architecture is able to perform real time (45 fps)
H.264 Motion Estimation on 1920x1088 progressive HD
video and is capable of being scaled for higher resolutions.
The performance is measured with four reference frames,
and a search window size of 48x48 pixels. When scaled for
HD-level performance, the architecture utilizes 77 K LUTs
and 18 K DFFs (with 8 processing units), and has a
maximum clock frequency of 198 MHz when implemented
on a Xilinx XC5VLX330 (Virtex-5) FPGA. Furthermore,
the scalability of the architecture makes it suitable for
FPGA-based applications where the upgradeability and
flexibility of the video encoder are essential requirements.

001307

6. REFERENCES

[1] Yu-Wen Huang, Tu-Chih Wang, Bing-Yu Hsieh, Liang-Gee
Chen, “Hardware Architecture Design for Variable Block Size
Motion Estimation in MPEG-4 AVC/JVT/ITU-T H.264,”
Proceedings of the 2003 International Symposium on Circuits and
Systems, Vol. 2, pp. 25-28, May 2003.

[2] S. Yap and J. V. McCanny, “A VLSI Architecture for Variable
Block Size Video Motion Estimation,” IEEE Transactions on
Circuits and Systems II, Vol. 51, No. 7, pp. 384-389, July 2004.

[3] M. Kim, I. Hwang, and S. Chae, “A Fast VLSI Architecture for
Full-Search Variable Block Size Motion Estimation in MPEG-4
AVC/H.264,” Proceedings of the 2005 conference on Asia South
Pacific design automation, pp. 631-634, 2005.

[4] Yang Song, Zhenyu Liu, Satoshi Goto, Takeshi Ikenaga,
“Scalable VLSI Architecture for Variable Block Size Integer
Motion Estimation in H.264/AVC,” IEICE Transactions on
Fundamentals of Electronics, Communications and Computer
Sciences, Vol. E89-A, No. 4, pp. 979-988, April 2006.

[5] Yang Song, Zhenyu Liu, Takeshi Ikenaga, Satoshi Goto, “VLSI
Architecture for Variable Block Size Motion Estimation in
H.264/AVC with Low Cost Memory Organization,” IEICE
Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, Vol. E89-A, No. 12, pp. 3594-3601,
December 2006.

[6] Zhenyu Liu, Yang Song, Takeshi Ikenaga, Satoshi Goto, “A
Fine-Grain Scalable and Low Memory Cost Variable Block Size
Motion Estimation Architecture for H.264/AVC,” IEICE
Transactions on Electronics, Vol. E89-C, No. 12, pp. 1928-1936,
December 2006.

[7] Tung-Chien Chen, Shao-Yi Chien, Yu-Wen Huang, Chen-Han
Tsai, Ching-Yeh Chen, To-Wei Chen, Liang-Gee Chen, “Analysis
and Architecture Design of an HDTV720p 30 Frames/s
H.264/AVC Encoder,” IEEE Transactions on Circuits and Systems
for Video Technology, Vol. 16, No. 6, pp. 673-688, June 2006.

[8] Zhenyu Liu, Yiqing Huang, Yang Song, Satoshi Goto, Takeshi
Ikenaga, “Hardware-Efficient Propagate Partial SAD Architecture
for Variable Block Size Motion Estimation in H.264/AVC,”
Proceedings of the 17th Great Lakes Symposium on VLSI, pp. 160-
163, 2007.

[9] W. Chung, “Implementing the H.264/AVC Video Coding
Standards on FPGAs,” Xilinx Broadcast Solution Guide, pp. 18-21,
September 2005.

[10] “Faraday H.264 Baseline Video Encoder & Decoder IPs:
FTMCP210/FTMCP220,” Faraday Technology Corporation
Product Documentation, 2005.

[11] “H.264 Motion Estimation Engine (DO-DI-H264-ME),”
Xilinx Corporation Product Documentation, October 2007.

[12] S. Lopez, F. Tobajas, A. Villar, V. de Armas, J.F. Lopez, R.
Sarmiento, “Low Cost Efficient Architecture for H.264 Motion
Estimation,” IEEE International Symposium on Circuits and
Systems, Vol. 1, pp. 412-415, May 2005.

[13] S. Yalcin, H.F. Ates, I. Hamzaoglu, “A High Performance
Hardware Architecture for an SAD Reuse Based Hierarchical
Motion Estimation Algorithm for H.264 Video Coding,”
Proceedings of the 2005 International Conference on Field
Programmable Logic and Applications, pp. 509-514, August 2005.

001308

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

