
Gigabyte-Scale Alignment Acceleration of
Biological Sequences via Ethernet Streaming

Theepan Moorthy and Sathish Gopalakrishnan

Electrical and Computer Engineering, The University of British Columbia

Abstract—We describe the design of a PC-to-FPGA data
streaming platform that enables hardware acceleration of giga-
byte scale input data. Specifically, the acceleration is an FPGA
implementation of the Dialign Algorithm, which performs both
global and local alignment of query biological sequences against
relatively larger reference strands of biological sequences. Earlier
implementations of this algorithm could not be scaled to handle
gigabyte-length reference sequences, nor megabyte-length query
sequences, due to the inherent limitations of available memory
and logic on single-FPGA platforms. We solve these issues via
the design of an Ethernet channel to stream the reference
sequence, and describe the novel use of SATA based Solid State
Drives (SSDs) to time multiplex the FPGA logic into handling
larger query sequences as well. In doing so, this paper also
presents a general method to achieve gigabyte-depth FIFOs on
commercially available FPGA development boards. This benefits
data-intensive acceleration even outside of the bioinformatics
application domain. Through the development of our acceleration
logic and careful coupling of the required IO peripherals, we have
successfully demonstrated a processing time of 28.61 minutes for
a 200 base-pair query-sequence aligned against a 1 GB reference-
sequence, a rate that is limited only by SATA 2 SDD write speeds.
The present runtime offers a 38x speedup (18.36 hours down to
28.61 minutes) compared to standalone PC based processing.

I. INTRODUCTION

As the logic density of FPGAs continues to scale the
opportunity to accelerate new applications through hardware
concurrency will also multiply. In addition, as parallel pro-
gramming steadily continues to become more of a necessity
than a luxury for new applications, the ease of adopting
algorithms to run on parallel hardware will also rise. In this
wave of transition to parallel programming, we believe that the
greater challenge to hardware designers lies not in developing
concurrent architectures to support acceleration, but in high
throughput data delivery to fully support the acceleration itself.
This shifting of efforts in terms of development time to design
Input/Output (IO) interfaces to handle “big data” applications
creates need for unconventional memory hierarchies as well as
the need for new Electronic Design Automation (EDA) tools
to help design and connect such resources.

II. THE DIALIGN ALGORITHM

Bioinformatics algorithms generally lend themselves well
to hardware acceleration due to their inherent amount of
parallelization. The Smith-Waterman algorithm [1] is one
such well known algorithm that offers optimal results (via
brute-force processing) for local alignment purposes. Local
alignment refers to the task of matching a query DNA sequence
against a single region of a reference DNA sequence, which
offers the highest degree of similarity. In contrast, other global

alignment algorithms, try to match the query sequence against
the entire/global length of the reference sequence, by allowing
for the query sequence itself to be segmented across multiple
regions of the reference sequence. Alternatively, an algorithm
such as DIALIGN [2] can be used to perform either local
or global alignment along with pairwise or multiple sequence
alignment as well; the drawback being that the increased
functionality also increases the computational demand.

In an effort to reduce the runtimes associated with the
increased computational load of DIALIGN, previous work
has had success on parallel processors [3]. However, the
parallel processors approach for large genomic sequences uses
heuristics to reduce runtimes. This is similar to BLAST and
other popular algorithms that also make use of heuristics to
trade off optimality in order to provide tolerable runtimes
(minutes instead of hours). Boukerche et al. [4] advanced
DIALIGN processing speeds even further by providing the first
hardware based implementation for it, with the added benefit
of not having to rely on heuristic methods to do so.

DIALIGN takes an input query sequence against another
input reference sequence, and aligns/matches segments of the
query sequence to the regions of the reference sequence that
offer the highest (optimal) degree of similarity. The output of
DIALIGN is a mapping of the query sequence coordinates to
various reference sequence coordinates (i.e. regions).

DIALIGN, uses a scoring matrix, with the characters of
the query sequence represented as columns and that of the
reference sequence placed as rows. Dynamic programming is
then often used to compute each score value of the matrix,
once finished, a trace-back procedure based on the best scores
is used to retrieve the optimal alignment. Acceleration in
hardware is achieved by computing several scores of the matrix
in parallel along sequential anti-diagonals of the matrix on each
clock cycle (Figure 1).

The systolic array architecture implemented by Boukerche
et al. [4] (Figure 2), uses a daisy-chained series of PEs to
compute the anti-diagonals of Figure 1 per clock cycle. It is
successful in hardware primarily due to its innovations in using
a linear memory model, to solve what otherwise would require
a 2-dimentional memory space to fill in the matrix in software.

The systolic array architecture (Figure 2) stores each char-
acter of the query sequence within each PE, then streams
the reference sequence across the chain of PEs to compute
the matrix scoring scheme. Given the complexity of each
PE, only 50 PEs were synthesizable on our present Virtex 5
(XC5VLX110T) FPGA implementation (XUP 5 Development
board). Increasing logic capacity on future FPGAs may fit



Fig. 1. Parallel matrix scoring along the anti-diagonals (dashed arrows)

Fig. 2. Array Architecture for Single-Partition processing [4]

more PEs by a factor-fold, but desired query-lengths are
already longer by orders of magnitude [5] [6] [7]. Ideally,
this architecture performs best when all of the characters of
the query sequence can entirely fit into the total n number of
synthesizable PEs. This work addresses the problem of scaling
the architecture when the query-size exceeds the number of
available PEs.

III. REFERENCE-SEQUENCE STREAMING

This section describes our solution to allow for gigabyte
reference sequences to be processed by the FPGA.

Simple Interface for Reconfigurable Computing (SIRC) [8]
is a software and matching hardware API solution that provides
for an abstracted level of communication between a Windows
based host PC and an FPGA device. SIRC was created to
allow for rapid integration of physical IO channels on an
FPGA via standard and user friendly APIs, thus obviating
manual configuration of hardware IP. Simplicity and ease
of hardware integration with a user-circuit were the driving
motives behind SIRC’s architectural design choices. Therefore
their interface works on a batch-mode data transfer mechanism
where the host sends the FPGA a set number of bytes as input,
the FPGA performs computations and then transfers a set
amount of bytes back to the host upon completion. Appropriate
handshaking protocols and synchronization are the fine grain
accomplishments that make such transfers successful within
their framework.

Despite the methods suggested by SIRC to achieve stream-
ing being conceptually straightforward, their actual implemen-
tation, however, requires careful attention to how the single
EMAC core is multiplexed in time between a pair of simulta-
neously active hardware APIs. This involves modifications to
the Hardware API itself to include a new hardware Arbitration
Module, in addition to crucial modifications to the accelerator
pipeline such that any and all delays in the stream of input data
does not corrupt the functional correctness of the accelerator-
output. These last two points are the major contributions of

Fig. 3. FPGA based Storage Interfaces for Application Partitioning

this work in adopting and implementing SIRC to provide for
a real-time reference sequence stream that successfully feeds
DIALIGN acceleration on the FPGA.

IV. SCALING QUERY-SEQUENCE SIZE

Relative to the difficulties of host communication to stream
gigabyte reference sequences to the FPGA, the local storage
and logic required to support the processing of large query
sequences on a single FPGA poses greater challenges. We
now move to describing the greater contribution of increasing
acceleration support for longer query sequence lengths locally
on the FPGA side.

Traditionally, local-data registered within the PEs them-
selves did not tax FPGA capacity. However, as the length of
the locally stored operand data (e.g. megabyte or longer query
sequences) continues to grow in DNA alignment applications,
the number of PEs that will fit within an FPGA device to store
the data locally may not be enough. For example, if a search
query sequence is 200 characters long, and a particular FPGA
device can only fit 50 PEs—then the 50 PEs have to be time
multiplexed 4 times over to process all 200 characters of query
data across the streamed reference data. This multiplexing is
commonly referred to as partitioning the query sequence into
multiple passes of operation across the workload.

Given that partition switches across the PEs are necessary
to support increasing lengths of query-sequences, the demand
that this process places on intermediate storage requirements
when gigabyte reference sequences are streamed is now de-
scribed. Three partition switches across a systolic-array archi-
tecture of 50 PEs daisy chained together, effectively creates
the logical equivalent of 200 PEs being used in a similar daisy
chain fashion. Thus, all of the data being produced by the last
(50th PE) at each clock cycle of a single partition’s operation
must be collected and stored. This stored data will then be
looped back and fed as contiguous input to the 1st PE when
the next partition is ramped up, thereby creating the required
illusion that 200 PEs are actually linked together (Fig. 3).

By making use of a memory hierarchy that goes beyond
what is available on-chip, this paper puts forth the use and
management of a SATA controller accessed by the FPGA to
provide for gigabyte-depth levels of SSD based FIFO storage,
and presents the challenges to keeping the latency of said FIFO
at minimal levels. Upcoming sections will now break down



Fig. 4. Data flow to and from the Load/Store FIFOs to SSDs
(Not all connections to the CLU are depicted)

the “Reconfigurable Data-Flow and Control” cloud depicted
within the abstract representation of our hardware (Figure 3),
and describe the select features of it in more detail.

A. Stitching Partitions Together

During the systolic-array based operation of the PEs,
there are seven pieces of intermediate data that flow from
one pipeline-stage to the next. Each piece of data, or 32-
bit variable, equals 4 bytes of data flow. Thus 28-bytes of
data in total, flow from one PE to the next, causing the last
terminal PE in the chain to also output 28-bytes per cycle.
A 1-gigabyte reference-sequence will correspondingly require
at least 1 giga-cycles to stream its characters across the PEs,
and thus 28-gigabytes of intermediate storage is required. This
storage, captures the total per cycle output of one partition’s
worth of processing. Our synthesized system can be clocked
at 67.689 MHz, thereby generating 1.876 gigabytes of data
per second. In other words, a write bandwidth of 1876 MB/s
for intermediate storage is required, if the accelerator is to be
sustained at full throughput.

The actual SATA 2 SSD hardware available to us is not
enough to sustain such demanding levels of write bandwidth.
However, even as a low-cost proof of concept prototype, it
still manages to harness accelerated performance relative to
single-PC processing alternatives.

The abstract Load/Store FIFO Blocks (Fig. 3) are imple-
mented as 7 banks of 32-bit wide FIFOs (Figure 4), each bank
capturing 1 of the 7 values of output from the terminal-PE. We
have arbitrarily set the depth of each bank to be 512 lines deep.
Thus, each abstract Load/Store FIFO Block, when full, retains
14.336 KB of data (512 x 28-bytes).

We employ, Groundhog [9] an open-source SATA Host
Bus Adapter (HBA) for FPGAs, to connect an SSD to our
accelerator. Groundhog supports basic sequential read/write
SATA commands, as well as more advanced Native Command
Queuing (NCQ) SSD features. In this work, only sequential
read/writes to the SSD were utilized, and NCQ optimizations
were not attempted.

The HBA has a 16-bit data line, and allows for a
minimum of 512 Bytes (1 sector) to be read/wrote at a

time. Our accelerator has 7 banks of 32-bit FIFOs that
need to be drained into the SSD. Therefore, we have de-
signed a FIFO TO DISK MUX module, to convert the ac-
celerator’s 224-bit (i.e. 7 banks by 32-bits) data line into
yet another 16-bit HBA WRITE FIFO (Figure 4). Once the
HBA WRITE FIFO reaches a full-threshold of 512 bytes,
its almost-full line is asserted to trigger a sector-write to
transfer the data into the HBA’s own internal buffer. Similar
HBA READ FIFO and DISK TO FIFO MUX modules are
also implemented to perform the inverse process of first
collecting the 16-bit pay load data read from the SSD and
then combining them to form single 224-bit payload writes
into the Load-FIFO-Block.

During initial accelerator execution within the first parti-
tion, only the Store-FIFO-Block (SFB) is active. And in turn,
the HBA is busy slowly writing the SFB data to disk. The HBA
has been benchmarked to provide for an average sequential
write-bandwidth of 66.324 MB/s (details of the connected SSD
will be provided within the Experimental Results section).
This is obviously significantly lower than the 1876 MB/s
of data bandwidth being outputted by the accelerator into
the SFB. Thus whenever the SFB is full, waiting for the
HBA WRITE FIFO to drain it, the accelerator pipeline is
intentionally paused/stalled.

Once all 28 gigabytes of captured intermediate data from
the first partition execution has been written to the SSD,
the system then begins to fully fill the Load-FIFO-Block
in preparation for the next partition’s worth of processing.
Once the HBA READ FIFO has filled the LFB to capacity,
the PEs are triggered to resume their pipeline flow. Our
control logic mandates that the LFB must always be filled
to capacity before any partition (apart from the very first
one) can commence. This ensures that an accelerator pipeline
stall is always only triggered by a full-line assertion from
the SFB versus an empty-line assertion from the LFB. The
sequential read bandwidth of SSDs is generally much greater
than their write-bandwidth (our HBA is benchmarked to have
a sequential read-rate of 272.964 MB/s and a sequential write-
rate of 66.324 MB/s), this facilitates ease of control logic
design in having the accelerator’s PEs being paused and un-
paused based solely on the full-line assertion and de-assertion
of the SFB respectively.

When the 2nd partition pass now starts, both the Load-
FIFO and Store-FIFO Blocks will be active. The LFB will
be feeding the 1st PE with data from the previous parti-
tion, and the SFB will be capturing the data produced by
the terminal-PE for this partition. The HBA WRITE FIFO
and HBA READ FIFO, connected to the SFB and LFB
respectively, are also now simultaneously active. However,
only a full-line assertion from the HBA WRITE FIFO trig-
gers any SSD activity, an empty-line assertion from the
HBA READ FIFO does nothing. This protocol of control
logic setup is well suited to our current implementation, which
only utilizes a single SSD. A future implementation, which
instantiates dual-HBAs connected to two independent SSDs,
would have the empty-line and full-line triggering SSD reads
and writes independently.



V. EXPERIMENTAL RESULTS

Our system was implemented on the Digilent XUP-V5
development board [10], which features a 1-Gbps physical
Ethernet line, two SATA header/connectors, and the Xilinx
XC5VLX110T Virtex 5 FPGA. Our system consumed 88%
of the device logic with the accelerator and IO interfacing
resources combined, and the accelerator utilizing 50 PEs. The
system is capable of operation at 67.689 MHz. The SSD
connected to our board is the Intel SSD SA2 MH0 80G 1GN
model, with a capacity of 80 GBs. It offers SATA 2 (3 Gbps)
line rates, and states 70 and 250 MB/s sequential write and
read bandwidths respectively under technical specifications by
the manufacturer. However, our benchmarked rates with the
Groundhog HBA [9] (independent of any of our DIALIGN ac-
celerator and interfacing logic) revealed maximum sequential
write and read rates of 66.324 and 272.964 MB/s respectively.

A 1-gigabyte-reference and 200-character-query synthetic
sequence was generated on the Host side. Timing is measured
to start once the Software API begins to send over the first
50-character segment of the query-sequence to be loaded onto
the FPGA, and stops once the PC console has printed all of
the calculated DIALIGN fragments from the FPGA. A wall-
clock time of 28.61 minutes was measured on average for the
FPGA to align the 200-character query sequence against the 1-
gigabyte reference sequence. The breakdown for the measured
time can be roughly accounted for as follows.

Each partition’s worth of execution needs to write and read
28 Gigabytes worth of data. The write-time for 28 gigabytes
given our HBAs benchmarked rate of 66.324 MB/s is 7.20
minutes (28 x 1.024 GB / 66.324 MB / 60s). The read-time
at an HBA read rate of 272.964 MB/s is 1.75 minutes. Given
that only a single SSD is in use, these two time requirements
cannot be overlapped, thus the total SSD time per partition’s
worth of execution becomes 8.95 minutes.

A. Comparison

The original DIALIGN hardware implementation [4], was
measured against an optimized C model in software that
captured the innovations in linear-memory processing that their
novel wave-front hardware architecture provided. This was
done so that the speedup comparisons between FPGA and PC
runtimes did not unfairly disadvantage the PC by having it
run the conventional DIALIGN algorithm [2], which does not
run in linear memory space. The PC used in their experiments
was a Pentium 4 3 GHz, and all disk read operations were
eliminated by retaining all data in main memory. When the
largest reference-sequence used in the experiments was 10 MB
in length, 200 characters was set as the maximum length for
the query-sequence. On the hardware side, since their system
was not implemented to support partitioning, 200 PEs were
synthesized to process the entire query length in one pass. This
work around was accomplished by leaving only bare minimal
hardware modules for synthesis, to squeeze all 200 PEs onto
their Stratix 2 device.

Their PC experiments report runtimes for aligning the
200-character query-sequence against the 10 MB reference-
sequence (Table 4 in [4]) to be 661.39 seconds or 11.02
minutes with the optimized C-model.

Modern PC systems can easily accommodate 4 Gigabytes
or more of main-memory, so a reference sequence of 10
MB scaled to a 1 GB reference sequence should not un-
proportionally affect runtime for the better. From this we make
the following assumption. The runtime on the Host PC to
align the same 200-character query-sequence against a much
longer 1-gigabyte reference sequence using the optimized C
model should be no shorter than their runtime of 11.02 minutes
factored by 100 (1-GB/10-MB), for a total time of 1102
minutes or 18.36 hours. This result is in line with why clustered
computing resources are a must for bioinformatics applications
when one cannot afford a half a day or more to obtain results
from a single PC.

Our FPGA speed up for the 200-character query-sequence
fully aligned against our 1-gigabyte reference-sequence,
streamed in real-time, can now be stated as 38x (1102 minutes
/ 28.61 minutes). This is not as impressive as the 343x speedup
reported by the original Boukerche et. al. DIALIGN implemen-
tation [4], but of course our added functionality of being able
to support much larger query and reference sequences demands
entirely different hardware resources. Nonetheless, we have cut
roughly 18 hours of single PC processing down to less than
half an hour via a low-cost prototype system.

REFERENCES

[1] T. F. Smith, M. S. Waterman, “Identification of Common Molecular
Subsequences,” J Molecular Biology, vol. 147, no. 1, pp. 195–197,
1981.

[2] B. Morgenstern, K. Frech, A. Dress, and T. Werner, “DIALIGN: Finding
Local Similarities by Multiple Sequence Alignment,” Bioinformatics,
vol. 14, no. 3, pp. 290–294, 1998.

[3] Martin Schmollinger, Kay Nieselt, Michael Kaufmann, Burkhard Mor-
genstern, “DIALIGN P: Fast pair-wise and multiple sequence alignment
using parallel processors,” BMC Bioinformatics, vol. 5, no. 128, 2004.

[4] Azzedine Boukerche, Jan M. Correa, Alba Cristina M.A. de Melo,
Ricardo P. Jacobi, “A Hardware Accelerator for the Fast Retrieval
of DIALIGN Bilogical Sequence Alignments in Linear Space,” IEEE
Transactions on Computers, vol. 59, no. 6, pp. 808–821, 2010.

[5] E. Sotiriades, C. Kozanitis, A. Dollas, “FPGA based architecture
for DNA sequence comparison and database search,” Parallel and
Distributed Processing Symposium, p. 8, 2006.

[6] Khaled Benkrid, Ying Liu, AbdSamad Benkrid, “A Highly Parame-
terized and Efficient FPGA-Based Skeleton for Pairwise Biological Se-
quence Alignment,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 17, no. 4, 2009.

[7] O. Storaasli, W. Yu, D. Strenski, and J. Maltby, “Performance evalu-
ation of FPGA-based biological applications,” Proc. Cray User Group
(CUG’07), 2007.

[8] Ken Eguro, “SIRC: An Extensible Reconfigurable Computing,” IEEE
Symposium on Field-Programmable Custom Computing Machines,
2010.

[9] Louis Woods, Ken Eguro, “Groundhog - A Serial ATA Host Bus
Adapter (HBA) for FPGAs,” IEEE 20th International Symposium on
Field-Programmable Custom Computing Machines, pp. 220–223, 2012.

[10] Xilinx, “Xilinx University Program XUPV5-LX110T Development
System,” http://www.xilinx.com/univ/xupv5-lx110t.htm.


