
Gigabyte-Scale Alignment of Biological Sequences:
A Case Study of IO Bandwidth Reconfiguration for FPGA Acceleration

Theepan Moorthy*, Jan M. Correa†, and Sathish Gopalakrishnan*

*Department of Electrical and Computer Engineering, The University of British Columbia
†Department of Computer Science, University of Brasilia

Abstract

We expose the implementation challenges to sustaining accelera-
tion speedups on FPGAs as the size of the data set to be processed
scales. We examine the implementation of an FPGA platform for
the processing of gigabyte scale biological sequences, and illustrate
the significant design changes that must be made to achieve a
successful implementation. In doing so, we demonstrate that
conventional accelerator architecture design choices that focus on
throughput speedup, in isolation of system level IO bandwidth
feasibility, cannot sustain their throughput levels as the input
data set scales. This is shown to be primarily due to currently
unavailable high-bandwidth large-scale data storage and retrieval
for FPGAs. As a solution to this problem, we propose a general
FPGA based IO infrastructure to utilize high bandwidth hard-drive
storage options, as means to achieving sustained throughput in the
face of large data.

1 Introduction
Systolic-arrays are often adopted as the architecture
of choice when designing accelerators that harness the
inherent parallelism within FPGA fabrics [1] [2] [3]. The
characteristics of the algorithm to be accelerated, and the
typical size of the input data set that it aims to process,
determine the number of Processing Elements (PEs) that
a suitable systolic array architecture for it should contain.
A systolic array offers optimal throughput performance
when, ideally, all of its PEs can be synthesized within the
available logic of a single FPGA. Any FPGA accelerator
that uses a systolic array architecture is susceptible to
performance degradation as soon as the input data set to be
stored locally, in conjunction with the total number of PEs
required to match such local data, exceeds its logic capacity.
This problem has long been documented [4] [5]. However,
published techniques to date rely on the assumption that
the available on-chip memory capacity suffices to achieve
their solution [6] to this problem. When scaling to stream
in gigabytes of input data for processing, we illustrate with
the case study presented herein, that this assumption quickly
fails.

FPGAs used as customized accelerators for DNA align-
ment offer access to more parallel computing power at
substantially lower costs, relative to computer cluster infras-
tructures. Work by Boukerche et al. [7] is an example of a
successful implementation of the DIALIGN alignment algo-
rithm on an FPGA platform. Our case study is an extension

of that implementation, for the purpose of making it scalable
to handle significantly larger sequences. We found that
trying to scale the implementation to larger problem sizes
dramatically increases the bandwidth requirements; here we
will describe the difficulties associated with handling such
increases in bandwidth, and explain how the problem arises.
An outline for a low cost reconfigurable infrastructure, as
a possible solution, to mitigate the increase in bandwidth
without sacrificing FPGA throughput is presented.

The problem of increased IO bandwidth demands when
scaling the size of input data sets is not unique to just
bioinformatics applications. Thus the contributions of this
article are not only applicable to the bioinformatics appli-
cation presented in this case study, but more importantly,
can be generalized to any systolic array based accelerator
that is hindered by FPGA capacity limitations in the face of
increased input data sizes.

2 FPGA Processing Architecture
Bioinformatics algorithms generally lend themselves well to
hardware acceleration due to their inherent amount of par-
allelization. The Smith-Waterman algorithm [8] is one such
well known algorithm that offers optimal results (via brute-
force processing) for local alignment purposes. Local align-
ment refers to the task of matching a query DNA sequence
against a single region of a reference DNA sequence, which
offers the highest degree of similarity. In contrast, other
global alignment algorithms, try to match the query sequence
against the entire/global length of the reference sequence, by
allowing for the query sequence itself to be segmented across
multiple regions of the reference sequence. The DIALIGN
[9] algorithm is similar to the Smith-Waterman algorithm
for local alignments, but enhances it to accommodate global
alignment purposes as well by allowing for user controlled
threshold levels, which can be used as a dial to vary whether
optimal local or global alignments are desired.

The input data to DIALIGN is a series of 1-byte charac-
ters that represent either DNA or protein strands of query
and reference sequences for comparison (cross comparisons
between DNA strands and protein strands are never made).
DNA representation requires only 4 distinct characters thus
a 2-bit data implementation would suffice, however, protein
variations require greater than 16 characters to represent.
Thus an 8-bit data representation is favoured to accommo-
date these two types of input sequences.

DIALIGN takes an input query sequence against another
input reference sequence, and aligns/matches segments of

2013 26th IEEE Canadian Conference Of Electrical And Computer Engineering (CCECE)

978-1-4799-0033-6/13/$31.00 ©2013 IEEE

Figure 1: Parallel matrix scoring along the anti-diagonals
(dashed arrows)

Figure 2: Array Architecture for Single-Pass processing [7]

the query sequence to the regions of the reference sequence
that offer the highest (optimal) degree of similarity. The
output of DIALIGN is a mapping of the query sequence
coordinates to various reference sequence coordinates (i.e.
regions).

DIALIGN, similar to Smith-Waterman, uses a scoring
matrix, with the characters of the query sequence represented
as columns and that of the reference sequence placed as
rows. Dynamic programming is then often used to compute
each score value of the matrix, once finished, a trace-back
procedure based on the best scores is used to retrieve the
optimal alignment.

Acceleration in hardware is achieved by computing
several scores of the matrix in parallel along sequential
anti-diagonals of the matrix on each clock cycle (Figure
1Parallel matrix scoring along the anti-diagonals (dashed
arrows)figure.1).

The systolic array architecture implemented by [7] (Figure
2Array Architecture for Single-Pass processing [7]figure.2),
uses a daisy-chained series of PEs to compute the anti-
diagonals of Figure 1Parallel matrix scoring along the anti-
diagonals (dashed arrows)figure.1 per clock cycle. It is
successful in hardware primarily due to its innovations in
using a linear memory model, to solve what otherwise would
require a 2-dimentional memory space to fill in the matrix in
software.

The systolic array architecture (Figure 2Array Archi-
tecture for Single-Pass processing [7]figure.2) stores each
character of the query sequence within each PE, then streams
the reference sequence across the chain of PEs to compute
the matrix scoring scheme. Given the complexity of each
PE, generally only a 100 or so are synthesizable on current
FPGAs. Increasing logic capacity on future FPGAs may
fit more PEs by a factor-fold, but desired query-lengths are
already longer by orders of magnitude [10] [6] [11]. Ideally,

Figure 3: Inclusion of abstract FIFO and Partition-State-
Storage (PSS) blocks.

this architecture performs best when all of the characters of
the query sequence can entirely fit into the total n number of
synthesizable PEs. This ideal scenario will be examined first,
before returning to the problem of scaling the architecture
when the query-size exceeds the number of available PEs.

The reference sequence is at most 1 byte per character, and
given normal accelerator operational speeds of 100 MHz,
this requires only 100 MB/s of bandwidth. Current FPGA
development boards offer direct SATA links to hard drives,
along with the necessary SATA Controller IP infrastructure
[12], reference sequences in the gigabyte ranges can be
streamed in at the required 100 MB/s rate from a hard-drive
database directly connected to the FPGA. Alternatively, a
1000 Mbps Ethernet stream could be used as well.

Given the streaming of the reference sequence, the PEs are
self sufficient in calculating the scoring matrix. Once scoring
calculations are complete, the DARM (Dialign Alignment
Retrieval Module, Figure 2Array Architecture for Single-
Pass processing [7]figure.2) retrieves score-data from the
PEs in shift-register-fashion to compose alignment forma-
tion data as output.

3 Scaling Query Sequence Length
When the character length of the query sequence exceeds the
number of PEs available for local storage and processing, the
PEs must be time-multiplexed over consecutive partitions of
the query sequence. This is referred to as the partitioning
technique [7], but the paper goes no further in discussing
the bandwidth challenges to implementation. Here we
introduce the two new abstract hardware blocks (Figure 3In-
clusion of abstract FIFO and Partition-State-Storage (PSS)
blocksfigure.3), to the existing architecture of Figure 2Array
Architecture for Single-Pass processing [7]figure.2, which
partitioning functionality requires, and discuss the details of
their implementation along with the bandwidth calculations
to making them scalable.

3.1 Partition-State-Storage

Upon completion of matrix-scoring execution, each PE
contains four pieces of trace-back data required by the
DARM for further processing. Gigabyte scale reference and
megabyte scale query sequences call for matrix row-column
coordinates that require 32-bit representation. Thus each
PE holds 16-bytes worth of post matrix processing data.
To implement partitioning, the end state of each PE upon
completion of each partition’s worth of matrix-scoring must
be stored.

2

When the total number of partitions required to fully pro-
cess a query exceeds the available on-chip memory capacity
to store PE states, off-chip DRAM must be used to prevent
overflow.

The DARM used within the partitioning-unsupported ar-
chitecture (Figure 2Array Architecture for Single-Pass pro-
cessing [7]figure.2), experiences a maximum of n (number
of PEs) on-chip-cycles of latency to retrieve data from the
1st PE in daisy-chained shift-register fashion. The DARM
within the partitioning-supported architecture of Figure 3In-
clusion of abstract FIFO and Partition-State-Storage (PSS)
blocksfigure.3 would suffer from off-chip DRAM access la-
tencies, to retrieve PSS data when query lengths call for off-
chip storage. Although this does contribute to performance
degradation in the face of partitioning induced latencies,
since it is not strictly an IO bandwidth limitation, worst case
DARM execution times when having to interface with off-
chip DRAM are not analyzed any further.

3.2 Partition-to-Partition Data

The abstract FIFO block (Figure 3Inclusion of abstract FIFO
and Partition-State-Storage (PSS) blocksfigure.3) provides
the storage necessary to stitch the output data of one parti-
tion, as input data to the next partition. It must be capable of
simultaneous read/write operations, since the last PE of the
present partition will be writing to it while the 1st PE reads,
from it, input data from the previous partition on each cycle.

Seven pieces of information flow from one PE to the
next, during matrix scoring in this architecture. This totals
to 28 bytes in a 32-bit implementation, which must be
stored and read from the FIFO per cycle. For even a
single gigabyte-length reference sequence, this equates to 28
gigabytes of data to be written and read, for each partition’s
stream of the reference sequence. Two or three gigabyte
reference genomes lead to doubling and tripling this amount
respectively. At this scale of generated intermediate data,
it becomes clear that a storage drive must be inserted into
the data-path at some point. Furthermore, the bandwidth
required for such large scale storage, at 100 MHz, is placed
at 5600 MB/s (read + write bandwidth).

4 System Infrastructure
An overview of competing PCI express based storage alter-
natives, and why they were ultimately rejected, can be found
in the Discussion Section (Section 5).

Direct FPGA Storage: Systems with direct FPGA control
of SATA based storage devices, in particular Solid State
Drives (SSDs), have already been successfully implemented
for high throughput large data acquisition applications in the
medical imaging domains [13].

Our intended implementation board is the XUPV5 de-
velopment board offered by Digilent. It utilizes the Xilinx
Virtex 5, XC5VLX110T, device. This devices has two GTP
RocketIO transceivers that can be utilized to implement two
SATA 3 Gbps cores, for a theoretical one-way maximum
bandwidth of 600 MB/s (given that each attached SSD can
support equal read or write rates of 300 MB/s).

Although the theoretically available 600 MB/s supports
neither the read nor write rate required by our application,
it will however allow us to prototype and measure the
system level degradation in accelerator performance that

Figure 4: FPGA based Storage Interfaces for Application
Partitioning

such a limitation exposes. Furthermore, we believe that
this limitation will shortly be overcome by other - more
expensive - Xilinx devices that implement 6 Gbps rather than
3 Gbps transceivers in conjunction with increasing the total
number of available transceivers. Nonetheless, it is our intent
to prototype this system with the available hardware to derive
the actual percentage of achievable bandwidth from the 600
MB/s theoretical rate. Such data can then be extrapolated to
a future system of 10 SATA 6-Gbs drives, where 5 SSDs can
offer 3000 MB/s of write-bandwidth, while the remaining
half is used for read-bandwidth. Consecutive partitions in
the application can then toggle the read/write usage between
the two halves of available drives.

The abstract FIFO (Figure 3Inclusion of abstract FIFO
and Partition-State-Storage (PSS) blocksfigure.3) that was
originally presented for our application’s partitioning re-
quirements is now illustrated (Figure 4FPGA based Storage
Interfaces for Application Partitioningfigure.4) with some of
the implementation details shown.

Reconfigurable Storage Interface: The reconfigurable
flexibility of FPGA devices, in theory, allows for an abstract
FIFO to be implemented as a storage system that supports
not only a varying number of attached SSDs, but also
accommodates itself to handle upgrades in future speeds of
the physical SSD links.

Varying write latencies across the SSDs will inevitably
require a buffer to be managed in DRAM [13] to prevent
data loss. The data when stored on the SSDs is organised
using the RAID protocol, thus a RAID controller which
then drives the SATA-cores is also required. Control of
the DRAM buffer, via the DRAM controller, the SATA-
cores, via the RAID controller, is all accomplished through
the Xilinx MicroBlaze 32-bit soft-core processor [13]. The
goal of this work is to not only adopt this configuration for
the need of our partitioning application, but to also make it
scalable in handling a varying number of SSDs with varying
SATA speeds.

At the hardware level, initially, manual synthesis of a
varying number of SATA cores per number of SSDs used
is required, along with their necessary data path wiring and
port connections. However, at the embedded software level,
fully flexible functionality to manage the DRAM buffer in
the face of x number of SSDs used and their varying SATA-
speeds supported, is envisioned.

3

5 Discussion
Competing Configurations for Storage: FPGA device-
DRAM cannot be utilized, even if bandwidth requirements
were met, since there is no data path available to a storage
drive from device-DRAM (as exists on host-DRAM).

A PCI express 2.0 x8 (8000 MB/s) equipped FPGA-
board affords enough bandwidth to transfer data to and
from the FPGA at the required rates, however, the issue of
high bandwidth storage to Hard Disk Drives (HDDs) still
remains. To mitigate this issue, further Host Bus Adapter
(HBA) hardware can be used to delegate the PCIe bandwidth
across multiple HDDs [14]. However, direct peer-to-peer
communication between the FPGA and HBA boards still
may not be possible unless a dedicated peer-to-peer PCIe
switch exists in combination with the integrated PCIe-root-
complex of the Northbridge [15].

Achieving peer-to-peer communication from FPGA to
HBA has another obstacle: commercial HBAs are designed
for conventional software driver based operation. This then
necessitates that the host OS and CPU become involved
with the transfer of data to the HBA. Even when the use of
DMA is considered, in this scenario, the drivers for the HBA
card will most likely expect data to be flowing in from host
memory, and not from the peer based FPGA board. Thus, the
CPU may have to initiate a DMA transfer from the FPGA
board (one memory page at a time) into host memory then
back to the HBA for storage. This form of indirect data
transfer, in the end, may not even support the 5600 MB/s
of read+write bandwidth required by our FPGA application.

A direction considered, yet ultimately dismissed, is an ar-
chitecture that eliminates a dedicated HBA card in favour of
motherboard-integrated SATA controllers. There are moth-
erboards that offer up to 12 independent SATA controllers,
forming the basis for a peer-to-many-peers architecture.
However, the same obstacles to efficient communication still
apply in this case, as it did between the FPGA and HBA op-
tion. If the 8-lane FPGA board is placed on the Northbridge,
a 2 GB/s DMI (Direct Media Interface) link, in itself will
not have sufficient bandwidth to transfer FPGA data to the
Southbridge. If a PCIe x8 port on the Southbridge is avail-
able, then the question becomes can the Southbridge PCI
express switching fabric partition data fast enough across the
slower 300 MB/s SATA drive links in parallel. The fact that
these integrated SATA controllers are all OS-driver driven,
meaning that they are conventionally designed to expect their
data to flow in from host-DRAM, combined with the nature
of slower PCIe switching fabric, does not facilitate high
bandwidth peer-to-many-peers communication between an
FPGA-board and such multiple host-SATA devices.

References

[1] Christos Kyrkou, Theocharis Theocharides, “A Flex-
ible Parallel Hardware Architecture fro AdaBoost-
Based Real-Time Object Detection,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems,
vol. 19, no. 6, 2011.

[2] S. Natarajan, A. Mohan, P. Meher, “A Self-
Configurable Systolic Architecture for Face Recogni-
tion System Based on Principal Component Neural
Network,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 21, no. 8, pp. 1071–1084,
2011.

[3] Zhenyu Liu, Yiqing Huang, Yang Song, Satoshi Goto,
Takeshi Ikenaga, “Hardware-Efficient Propagate Par-
tial SAD Architecture for Variable Block Size Motion
Estimation in H.264/AVC,” Proceedings of the 17th
Great Lakes Symposium on VLSI, pp. 160–163, 2007.

[4] S. Y. Kung, “VLSI Array Processors,” Englewood
Cliffs, NJ: Prentice-Hall, 1988.

[5] D. I. Moldovan, J. A. B. Fortes, “Partitioning and
mapping of algorithms into fixed size systolic arrays,”
IEEE Transactions on Computers, vol. 35, pp. 1–12,
1986.

[6] Khaled Benkrid, Ying Liu, AbdSamad Benkrid,
“A Highly Parameterized and Efficient FPGA-Based
Skeleton for Pairwise Biological Sequence Align-
ment,” IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, vol. 17, no. 4, 2009.

[7] Azzedine Boukerche, Jan M. Correa, Alba Cristina
M.A. de Melo, Ricardo P. Jacobi, “A Hardware Ac-
celerator for the Fast Retrieval of DIALIGN Bilogical
Sequence Alignments in Linear Space,” IEEE Transac-
tions on Computers, vol. 59, no. 6, pp. 808–821, 2010.

[8] T. F. Smith, M. S. Waterman, “Identification of Com-
mon Molecular Subsequences,” J Molecular Biology,
vol. 147, no. 1, pp. 195–197, 1981.

[9] B. Morgenstern, K. Frech, A. Dress, and T. Werner,
“DIALIGN: Finding Local Similarities by Multiple
Sequence Alignment,” Bioinformatics, vol. 14, no. 3,
pp. 290–294, 1998.

[10] E. Sotiriades, C. Kozanitis, A. Dollas, “FPGA based ar-
chitecture for DNA sequence comparison and database
search,” Parallel and Distributed Processing Sympo-
sium, p. 8, 2006.

[11] O. Storaasli, W. Yu, D. Strenski, and J. Maltby, “Per-
formance evaluation of FPGA-based biological appli-
cations,” Proc. Cray User Group (CUG’07), 2007.

[12] Louis Woods, Ken Eguro, “Groundhog - A Serial
ATA Host Bus Adapter (HBA) for FPGAs,” IEEE
20th International Symposium on Field-Programmable
Custom Computing Machines, pp. 220–223, 2012.

[13] J. E. Breeding, W.F. Jones, J. H. Reed, T. Sangpaithoon,
“"PETLINK Stream Buffer: Using an FPGA-based
RAID controller with solid-state drives to achieve loss-
less, high count-rate 64-bit coincidence event acquisi-
tion for 3-D PET,” IEEE Nuclear Science Symposium
and Medical Imaging Conference, pp. 3894–3900,
2011.

[14] HighPoint Technologies Inc., “A PCI 2.0 x8
HBA to 32 SATA-3 ports.” [Online]. Avail-
able: http://www.highpoint-tech.com/USAnew/cs −
seriesDC7280.htm

[15] PLX Technology, “Express Apps.” [Online]. Available:
http://www.plxtech.com/files/pdf/apps/ExpApp49Dual−
Graphics07Mar07.pdf

4

