Definitions and Theorems

- 1. f(x) is continuous at x = a if $(x) \neq (a)$ exists
 - ② lim f(x) exists
 - 3 lm f(x) = f(a)
- 2. (a, f(a)) is a local max if $f(a) \ge f(x)$ for all x near a
- 3. (a, f(a)) is a global max if $f(c) \ge f(x)$ for all x
- 4. (a, f(a)) is a local min if $f(a) \leq f(x)$ for all x near a.
- 5. (a, f(a)) is a global min if $f(a) \leq f(x)$ for all x
- 6. THE EXTREME VALUE THEOREM: if f(x) is continuous on [l, r] then f(x) attains a global extrema on [l, r]

PROBLEMS

1. Mark the following students' work on this continuity problem out of 3 marks. Justify why you gave the

QUESTION: Prove that $f(x) = x^2$ is continous at x = 2. Solution: If $f(x) = x^2$ is continous at x=2, then it must satisfy three conditions. We see that $f(2)=2^2$, so it exists and the first condition is satisfied. Secondly, we have that $\lim_{x\to 2} x^2 = 4$, so the second condition is satisfied. Finally, we have that $\lim_{x\to 2} x^2 = 4 = 2^2 = f(2)$, so the third condition is satisfied. Hence, $f(x) = x^2$ is continuous at x = 2.

* Il would give it a 1/3. They assume what they want to prove.

2. Prove that f(x) = 3x + 9 is continuous at x = 3

If f(x) so continuous at x=3, then we need to check all three conditions: (1) f(3) = 3(3) + 9 = 18, so f(3) exists 18+ $\epsilon = 3x + 9$ (2) Claim lym f(x) = 18 $x = \frac{9+\epsilon}{3} = 3+\frac{\epsilon}{3}$ (2) Claim lym f(x) = 18 $x \to 3$ Let 8 > 0 Take $\delta = \frac{\epsilon}{3}$ Than it

Let 2>0. Take $\delta = \frac{\varepsilon}{3}$. Then if $\chi \in \left(3 - \frac{\varepsilon}{3}, 3 + \frac{\varepsilon}{3}\right), \quad f(x) \in \left(18 - \varepsilon, 18 + \varepsilon\right)$

3 So f(3)=18 = lim f(x)

3

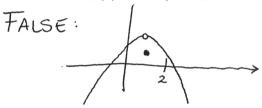
3. Prove that $f(x) = \sqrt{x}$ is continous at x = 4 2-2 $+ \delta_2$ So f(24) is defined.

Let $\epsilon > 0$. Consider $\delta_1 = (2+\epsilon)^2 - 4$ and $\delta_2 = 4 - (2-\epsilon)^2$.

 $\int_{1}^{2} = (2+\xi)^{2} - 4 \text{ and } \int_{2}^{2} = 4 - (2-\xi)^{2}.$ For $0 < \xi \le 2$, we have $\int_{1}^{2} < \int_{2}^{2} . \text{ Take } \delta = \int_{2}^{2} . \text{ If } \chi \in (4-\delta, 4+\delta) \text{ then } f(x) \in (2-\xi, 2+\xi).$ $f(\chi) \in (2-\xi, 2+\xi). \text{ For } \xi > 2, \text{ take } \delta = 2. \text{ If } \chi \in (4-\delta, 4+\delta) \text{ then } f(\chi) \in (2-\xi, 2+\xi)$ $f(\chi) \in (2-\xi, 2+\xi). \text{ For } \xi > 2, \text{ take } \delta = 2. \text{ If } \chi \in (4-\delta, 4+\delta) \text{ then } f(\chi) \in (2-\xi, 2+\xi)$ $f(\chi) \in (2-\xi, 2+\xi). \text{ for } \xi > 2, \text{ take } \delta = 2. \text{ If } \chi \in (4-\delta, 4+\delta) \text{ then } f(\chi) \in (2-\xi, 2+\xi)$ $f(\chi) \in (2-\xi, 2+\xi). \text{ for } \xi > 2, \text{ take } \delta = 2. \text{ If } \chi \in (4-\delta, 4+\delta) \text{ then } f(\chi) \in (2-\xi, 2+\xi)$ $f(\chi) \in (2-\xi, 2+\xi). \text{ for } \xi > 2, \text{ take } \delta = 2. \text{ If } \chi \in (4-\delta, 4+\delta) \text{ then } f(\chi) \in (2-\xi, 2+\xi)$ $f(\chi) \in (2-\xi, 2+\xi). \text{ for } \xi > 2, \text{ take } \delta = 2. \text{ If } \chi \in (4-\delta, 4+\delta) \text{ then } f(\chi) \in (2-\xi, 2+\xi)$ $f(\chi) \in (2-\xi, 2+\xi). \text{ for } \xi > 2, \text{ take } \delta = 2. \text{ If } \chi \in (4-\delta, 4+\delta) \text{ then } f(\chi) \in (2-\xi, 2+\xi)$ $f(\chi) \in (2-\xi, 2+\xi). \text{ for } \xi > 2, \text{ take } \delta = 2. \text{ If } \chi \in (4-\delta, 4+\delta) \text{ then } f(\chi) \in (2-\xi, 2+\xi)$ $f(\chi) \in (2-\xi, 2+\xi). \text{ then } f(\chi) = \sqrt{\chi} \text{ to continuous at } \chi = \chi \in (4-\delta, 4+\delta) \text{ then } f(\chi) \in (2-\xi, 2+\xi)$ $f(\chi) \in (2-\xi, 2+\xi). \text{ then } f(\chi) = \sqrt{\chi} \text{ to continuous at } \chi = \chi \in (4-\delta, 4+\delta) \text{ then } f(\chi) \in (2-\xi, 2+\xi)$ $f(\chi) \in (2-\xi, 2+\xi). \text{ then } f(\chi) = \chi \text{ to continuous at } \chi = \chi \text{ then } f(\chi) = \chi \text{ then } f(\chi$

HINT: Consider Ean 3 = \(\frac{31}{10}, \frac{314}{100}, \frac{3141}{1000}, \dots \)

5. True or False: If f(x) is defined everywhere, then f(x) attains a global maximum on the interval [0,2].



this function is defined everywhere but has no global max on [0,2]. In fact, it has no global max on (-00,00).

- 6. Find a function that satisfies all of the following conditions:
 - (a) Discontinuous at x = 2 and x = 4.
 - (b) Local minimum at $x = \pi$
 - (c) Global maximum at x = 2
 - (d) No global minimum

