Sequences, Part 2, September 15, 2017

1. True or False: If $\left\{a_{n}\right\}$ is bounded, then it converges.

Solution: False. Take $(-1)^{n}$. This sequence is bounded between -1 and 1 , but it does not converge (proven in recitation. Take $\epsilon=\frac{1}{2}$.)
2. True or False: If $\left\{a_{n}\right\}$ converges, then it is bounded.

Solution: This statement is true. Suppose the sequence a_{n} converges to L. This means, for every $\epsilon>0$, there exists N such that if $n>N,\left|a_{n}-L\right|<\epsilon$. In particular, this is true for $\epsilon=1$. For $\epsilon=1$, we know there exists N such that if $n>N,\left|a_{n}-L\right|<1$. That is, a_{n} is bounded between $L-1$ and $L+1$. So, the "tail" of the sequence is bounded. All we need to show is that the "head" of the sequence is bounded. The head of the sequence consists of the terms $a_{1}, a_{2}, \ldots, a_{N}$, which is a finite set. Take $U=\max \left\{a_{1}, a_{2}, \ldots, a_{N}, L+1\right\}$ and $B=\min \left\{a_{1}, a_{2}, \ldots, a_{N}, L-1\right\}$. We know that the tail is bounded above by $L+1$, so if $a_{1}, a_{2}, \ldots, a_{N}$ are all less than $L+1$, we take $U=L+1$ as the upper bound for the entire sequence. Conversely, if there are some $a_{n}>L+1$ where $1 \leq n \leq N$, take the maximum of those as the upper bound. The same argument follows for the lower bound. Hence, a_{n} is bounded.
3. Suppose $\left\{a_{n}\right\}$ diverges to $-\infty$ and $\left\{b_{n}\right\}$ converges to 1 . Does $\left\{a_{n} b_{n}\right\}$ converge or diverge? Why?

Solution: Let's try to get a rough conceptual idea, first. When n gets really big, $a_{n} b_{n}$ will be something big and negative, multiplied by something close to 1 . Thus, we suspect $a_{n} b_{n}$ to be something big and negative, thus diverging. Ok, so let's try and show that $a_{n} b_{n}$ diverges by definition.

Proof: Suppose $a_{n} b_{n}$ converges to L. That is, for every $\epsilon>0$, there exists N such that if $n>N$, $\left|a_{n} b_{n}-L\right|<\epsilon$. Since b_{n} converges to 1 , this implies that we can find N such that $b_{n} \neq 0$, for all $n>N$. Then, since $a_{n} b_{n}$ converges, the sequence with, for $n>N, n^{t h}$ term $\frac{1}{b_{n}} a_{n} b_{n}=a_{n}$ would also converge. However, this contradicts the fact that a_{n} diverges. Hence, the sequence $a_{n} b_{n}$ must diverge.
4. Suppose $\left\{a_{n}\right\}$ diverges to ∞ and $\left\{b_{n}\right\}$ converges to 0 . Does $\left\{a_{n} b_{n}\right\}$ converge or diverge? Why?

Solution: This is an inconclusive statement. That is, the sequence $\left\{a_{n} b_{n}\right\}$ may or may not converge.Consider $a_{n}=n$ and $b_{n}=1 / n$. We know that a_{n} diverges to infinity and b_{n} converges to 0 . Then, we have $a_{n} b_{n}=n \cdot 1 / n=1$, which is a convergent sequence. On the other hand, consider $a_{n}=n$ and $b_{n}=1 / \sqrt{n}$. We know that a_{n} diverges to infinity and b_{n} converges to 0 . However, we have $a_{n} b_{n}=n \cdot \frac{1}{\sqrt{n}}=\sqrt{n}$, which diverges to infinity. See if you can come up with other examples!

