QUIZ 5

First name: SOLUTION
Last name:
Student number:
Recitation section:

1. Find the volume of the solid generated by rotating the region bounded by $y=e^{-x^{2}}, y=0, x=1$ and $x=3$ about the y-axis.

Rotate about

$$
\text { SHELLS: } V=\int_{1}^{3} 2 \pi r h d x=\int_{1}^{3} 2 \pi x f(x) d x
$$

NOTE: A lot of students wrote the following:

$$
\int_{a}^{b}-2 x e^{-x^{2}} d x=\int_{a}^{b} e^{u} d u=\left.e^{u}\right|_{a} ^{b}=\underbrace{\left.e^{-x^{2}}\right|_{a} ^{b}}_{x}
$$

$$
=\int_{1}^{3} 2 \pi x e^{-x^{2}} d x
$$

- this is not correct.
- Mostlyeveryone changed to \circledast, which is good, but the limits in the first
 integral are in terms of x. So, once we make the substitution $u=-x^{2}$, the limits should charge too. That 15 , if
$x: a \rightarrow b$, then $u=-a^{2} \rightarrow-b^{2} . S_{0,} \int_{a}^{b} 2 x e^{-x^{2}} d x=\int_{-a^{2}} e^{-k^{2}} d u$

QUIZ 5

First name:
Last name:
Student number:
Recitation section:

1. Find the volume of the solid generated by rotating the region bounded by $y=e^{-x^{2}}, y=0, x=\frac{1}{2}$ and $x=2$ about the y-axis.

See same remark as
Above.
$\int_{1 / 2}^{2}-2 x e^{-x^{2}} d x=\int_{1 / 4}^{4} e^{u} d u \neq \int_{1 / 2}^{2} e^{u} d u$

- if you make a substitution, make sure to change your limits too.

$$
=\int_{1 / 2}^{2} 2 \pi x e^{-x^{2}} d x \quad \begin{gathered}
\text { Let } u=x^{2} \\
d u=2 x d x \\
x: 1 / 2 \rightarrow 2 \\
u: 1 / 4 \rightarrow 4
\end{gathered}
$$

