QUIZ 6

First name:
SOLUTIONS
Last name: See page 2 for comments on common mistakes al observed.
Student number:
Recitation section:

1. If $p>\frac{1}{4}$, use the Integral Test to determine if $\sum_{n=1}^{\infty} \frac{\log (n)}{n^{4 p}}$ converges or diverges.

If $\int_{1}^{\infty} \frac{\log (x)}{x^{4 p}} d x$ converges, then $\sum_{n=1}^{\infty=1} \frac{\log (n)}{n^{4 p}}$ converges
By definition: $\int^{\infty} \frac{\log (x)}{x^{4 p}} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{\log (x)}{x^{4 p}} d x$ use integration

$$
\begin{aligned}
& \left.\qquad \begin{array}{rl}
S_{0}: \lim _{b \rightarrow \infty} \int_{1}^{b} \frac{\log (x)}{x^{4 p}} d x & =\lim _{b \rightarrow \infty}\left[\left.\frac{\log (x) x^{-4 p+1}}{-4 p+1}\right|_{1} ^{b}-\int_{1}^{b} \frac{x^{-4 p+1}}{-4 p+1} \cdot \frac{1}{x} d x\right] d v
\end{array}\right)=\frac{l}{x^{4 p}(x)} d x d u=\frac{1}{x} d x \\
& \\
& =\lim _{b \rightarrow \infty}\left[\frac{\log (b)}{b^{4 p-1}(-4 p+1)}-\int_{1}^{b} \frac{x^{-4 p+1}}{-4 p+1}\right.
\end{aligned}
$$ $f(x)=\frac{x^{2}}{3+6 x}$. What is the radius of convergence?

$$
\begin{aligned}
\frac{x^{2}}{3+6 x}=x^{2} \cdot \frac{1}{3+6 x} & =\frac{x^{2}}{3}\left(\frac{1}{1-(-2 x)}\right) \\
& =\frac{x^{2}}{3}\left(\sum_{n \geqslant 0}(-2 x)^{n}\right) \text { for }|2 x|<1 \\
& =\frac{x^{2}}{3} \sum_{n \geqslant 0}(-2)^{2} x^{n}, \text { for }|x|<1 / 2 \\
& =\frac{1}{3} \cdot \sum_{n \geqslant 0}(-1)^{n} 2^{n} x^{n+2} \\
& =\frac{1}{3}\left(x^{2}-2 x^{3}+4 x^{5}-8 x^{6}+\ldots\right) \text { for }|x|<1 / 2
\end{aligned}
$$

$$
=\frac{x^{2}}{3}-\frac{2 x^{3}}{3}+\frac{4 x^{5}}{3}-\frac{8 x^{6}}{3}+\cdots \text { for }|x|<1 / 2 \Rightarrow \begin{aligned}
& \text { RADIUS OF } \\
& \text { CONVERGENCE }
\end{aligned}=\frac{1}{2}
$$

QUIZ 6

First name: Sbsewed Common Mistakes
Last name:
Student number:
Recitation section:

1. If $p>\frac{1}{3}$, use the Integral Test to determine if $\sum_{n=1}^{\infty} \frac{\log (n)}{n^{3 p}}$ converges or diverges.

- In this problem, el saw three major errows.
(1)Remember, $\int_{1}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{1}^{b} f(x) d x$ by definition. To write $\left.f(x)\right|_{1} ^{\infty}$ without a limit is meaningless, because $f(\infty)$ is not well-defined.
(2) The integral test says that for $\sum_{n=1} a_{n}$, if $\int_{1}^{\infty} f(x) d x$ converges, then $\sum_{n=1} f(n)$ converges. It does NOT say that $\int_{1}^{\infty} f(x) d x=\sum_{n \geqslant 1} f(n)$
Think about why this is false. That is, construct a counterexample.
(3) If you got to the point of having no integrals to compute, you would have beer let with $\lim _{b \rightarrow \infty} \frac{\log (b)}{b^{4 p-1}}$. To compute this limit, you need l'hôputal's since $4 p-1>0$.

2. Find the first four non-zero terms of the power series representation centred at $x=0$ for the function $f(x)=\frac{x^{2}}{2+6 x}$. What is the radius of convergence?

Two major mistakes here:
(1) Read the question.

It coked for the radius of convergence and first four terms.
(2) Many of you wanted to test the endpoints. generally, this is important to do for power senses, especially if ming the ratio test to find the interval of comergence. However, since we know $\frac{V_{1}}{1-u}=\sum_{n \geqslant 0} u^{n}$ for $|u|<1$ we do not need to use the ratio test on test the endpoints and only make the substitution for $|u|<1$
Beyond that, many claimed that the power series converged at the right endpoint. This is false. off you plug in the night endpoint, you get $\sum_{n \geqslant 1}(-1)^{n}=-1+1-1+\ldots$ which DIVERGES. Yes, it may look like it sums to 0 , but it diverges because
(1) the sequence of parisil sums diverges

OR (2) By the dwengence test since $\lim _{n \rightarrow \infty}(-1)^{n} \neq 0$. This sequence is not converging to anything.

