QUIZ 8

First name: SOLUTIONS

Last name:
Student number:
Recitation section:

1. By recognizing the series as a Taylor (or Maclaurin) series evaluated at a particular value of x, find the sum of $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n+1}}{(2 n+1)!2^{2 n+1}}=\frac{\pi}{2}-\frac{\pi^{3}}{3!2^{3}}+\frac{\pi^{5}}{5!2^{5}}-\frac{\pi^{7}}{7!2^{7}}+\ldots$.

$$
\begin{aligned}
& \text { Note that } \sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!} \\
& \operatorname{So}, \sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n+1}}{(2 n+1)!2^{2 n+1}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(\frac{\pi}{2}\right)^{2 n+1}}{(2 n+1)!}=\sin \left(\frac{\pi}{2}\right)=1
\end{aligned}
$$

2. Find the first three terms in the alternating series representation of the integral $\int_{0}^{1} \frac{18}{x^{2}+9} d x$, obtained by using first three nonvanishing terms in the Maclaurin series of the integrand $f(x)=\frac{18}{x^{2}+9}$.

$$
\begin{aligned}
& \int_{0}^{1} \frac{18}{x^{2}+9} d x=\frac{18}{9} \int_{0}^{1} \frac{1}{1-\left(\frac{-x^{2}}{9}\right)} d x=2 \int_{0}^{1} \sum_{n=0}^{\infty}\left(\frac{-x^{2}}{9}\right)^{n} d x \\
&=2 \int_{0}^{1} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{9^{n}} d x \\
&=2\left[\left.\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{9^{n}(2 n+1)}\right|_{0} ^{1}=2 \sum_{n=0}^{\infty} \frac{(-1)^{n}}{9^{n}(2 n+1)}\right. \\
& \text { three non-yero } \\
& \text { are } \\
& \frac{2}{27} \frac{2}{405}=2\left[1-\frac{1}{9 \cdot 3}+\frac{1}{81 \cdot 5}-\ldots\right]
\end{aligned}
$$

First three non-mero

terms are

 $2,-\frac{2}{27}, \frac{2}{405}$
QUIZ 8

First name:
Last name:

Student number:
Recitation section:

1. By recognizing the series as a Taylor (or Maclaurin) series evaluated at a particular value of x, find the sum of $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{(2 n)!2^{2 n}}=1-\frac{\pi^{2}}{2!2^{2}}+\frac{\pi^{4}}{4!2^{4}}-\frac{\pi^{6}}{6!2^{6}}+\ldots$.

The most common mistake in this problem was forgetting about the $2^{2 n}$ in the denominator and not combining the common exponent for x and 2 .
2. Find the first three terms in the alternating series representation of the integral $\int_{0}^{1} \frac{27}{x^{2}+9} d x$, obtained by using first three nonvanishing terms in the Maclaurin series of the integrand $f(x)=\frac{27}{x^{2}+9}$. on by recogruyneng the integral as having to do with arctan (x)
(1) Those who did $\arctan (x)$, watch out for constants in your integral
(2) For both strategies, remember this is a definite integral, so the terms you found shouldn't have had x's in them. You needed to evaluate your power series from 0 to 1 .

