Taylor Series, March 14, 2018

1. Taylor's Theorem with Lagrange Remainder:

See class notes
2. Show that the Taylor series for $\sin (x)$ converges to $\sin (x)$.

See class notes
3. Find a power series which converges to $x \sin \left(x^{3}\right)$. What is its radius of convergence?
$\sin (u)=\sum_{n \geq 0} \frac{(-1)^{n}}{(2 n+1)!} u^{2 n+1}$, for all $x \in \mathbb{R}$ and substitute $u=x^{3}$. Radius of convergence does not change.
4. Finda power series that converges to $\arctan (5 x)$. What is its radius of convergence?

Use $\arctan (u)=\sum_{n \geq 0} \frac{(-1)^{n}}{2 n+1} u^{2 n+1}$, for $|u|<1$ and make the substitution of $u=5 x$
5 . Find a series that converges to $x \log (2-x)$. What is its radius of convergence?
Use $\log (1+x)=\sum_{n \geq 1} \frac{(-1)^{n-1}}{n} x^{n}$, for $-1<x \leq 1$ and properties of logarithms

