Power Series 1, February 28, 2018

1. Prove that $\sum_{n \geq 0} \frac{x^{n}}{n!}$ satisfies the differential equation $f^{\prime}(x)=f(x)$

See your class notes.
2. Find the power series representation for the following functions:

Solution note: In all of the examples below, we use the convergence of the geometric series $\sum_{n \geq 0} u^{n}=$ $\frac{1}{1-u}$, for $|u|<1$. This means that the series converges to $\frac{1}{1-u}$ only when $|u|<1$. We can use substituion of u (which may change the interval of convergence), as well as differentiation and integration (which do not change the interval of convergence) to find power series representations of the functions. That is, we find a series that converges to the function for certain values of x.
(a) $\cdot \frac{1}{2-x}$

We have: $\frac{1}{2-x}=\frac{1}{2} \frac{1}{1-\left(\frac{x}{2}\right)}=\frac{1}{2} \sum_{n \geq 0}\left(\frac{x}{2}\right)^{n}=\sum_{n \geq 0} \frac{x^{n}}{2^{n+1}}$, for $\left|\frac{x}{2}\right|<1$

- $\frac{1}{x^{2}+1}$

We have: $\frac{1}{x^{2}+1}=\frac{1}{1-\left(-x^{2}\right)}=\sum_{n \geq 0}\left(-x^{2}\right)^{n}=\sum_{n \geq 0}(-1)^{n} x^{2 n}$, for $\left|x^{2}\right|<1$

- $\frac{3}{1-2 x^{2}}$

We have: $\frac{3}{1-2 x^{2}}=3 \frac{1}{1-\left(2 x^{2}\right)}=3 \sum_{n \geq 0}\left(2 x^{2}\right)^{n}=3 \sum_{n \geq 0} 2^{n} x^{2 n}$, for $\left|2 x^{2}\right|<1$
(b) $\cdot \frac{1}{(1+x)^{3}}$

We have: $\frac{1}{(1+x)^{3}}=\frac{1}{2} \frac{d}{d x}\left(\frac{d}{d x}\left(\frac{1}{1+x}\right)\right)=\frac{1}{2} \frac{d}{d x}\left(\frac{d}{d x}\left(\sum_{n \geq 0}(-x)^{n}\right)\right)=\frac{1}{2} \frac{d}{d x}\left(\frac{d}{d x}\left(\sum_{n \geq 1}(-1)^{n} x^{n}\right)\right)=$
$\frac{1}{2} \frac{d}{d x}\left(\sum_{n \geq 0}(-1)^{n} n x^{n-1}\right)=\frac{1}{2} \sum_{n \geq 2}(-1)^{n} n(n-1) x^{n-2}$, which will be true for $|x|<1$

- $\frac{1}{(1-x)^{3}}$

We have: $\frac{1}{(1-x)^{3}}=\frac{1}{2} \frac{d}{d x}\left(\frac{d}{d x}\left(\frac{1}{1-x}\right)\right)=\frac{1}{2} \frac{d}{d x}\left(\frac{d}{d x}\left(\sum_{n \geq 0}(x)^{n}\right)\right)=\frac{1}{2} \frac{d}{d x}\left(\sum_{n \geq 0} n x^{n-1}\right)=$ $\frac{1}{2} \sum_{n \geq 2} n(n-1) x^{n-2}$, which will be true for $|x|<1$

- $\arctan (x)$

We have that $\arctan (x)=\int_{0}^{x} \frac{1}{1+t^{2}} d t=\int_{0}^{x} \sum_{n \geq 0}\left(-t^{2}\right)^{n}=\int_{0}^{x} \sum_{n \geq 0}(-1)^{n} t^{2 n}=\sum_{n \geq 0} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}$.
This equality holds for $|x|<1$
(c) $\cdot \frac{x}{x^{2}+1}$

We have that $\frac{x}{x^{2}+1}=x \frac{1}{x^{2}+1}=\frac{1}{1-\left(-x^{2}\right)}=\sum_{n \geq 0}\left(-x^{2}\right)^{n}=\sum_{n \geq 0}(-1)^{n} x^{2 n}$, for $\left|x^{2}\right|<1$

- $\frac{1+x}{1-x}$

We have that $\frac{1+x}{1-x}=\frac{1}{1-x}+\frac{x}{1-x}=\sum_{n \geq 0} x^{n}+x \sum_{n \geq 0} x^{n}=1+2 \sum_{n \geq 1} x^{n}$, for $|x|<1$

- $\frac{2 x+3}{x^{2}+6 x+2}$

This one is a little harder than the others because if we want to use the geometric series, we need to have it in the form of $\frac{1}{1-u}$ and we want to make sure that our result is a power series that is of the form $\sum_{n \geq 0} a_{n}(x-a)^{n}$. To do this, notice that $x^{2}+6 x+2=x^{2}+6 x+9-9+2=$ $(x+3)^{2}-7=-\left(7-(x+3)^{2}\right)$. Try and finish the reaminder of the problem yourself.

